Аналитическое сглаживание временного ряда. Уравнение тренда

Приняв в качестве гипотетической функции теоретических уровней прямую , определим параметры последней:

Решение этой системы можно осуществить по формулам:

Отсюда искомое уравнение тренда: . Подставляя в полученное уравнении значения 1, 2, 3, 4, 5, определяем теоретические уровни ряда (см. предпоследнюю графу табл. 4.3). Сравнивая значения эмпирических и теоретических уровней, видим, что они близки, т.е. можно сказать, что найденное уравнение весьма удачно характеризует основную тенденцию изменения уровней именно как линейную функцию.

Система нормальных уравнений упрощается, если отсчет времени ведется от середины ряда. Например, при нечетном числе уровней серединная точка (год, месяц) принимается за нуль. Тогда предшествующие периоды обозначаются соответственно -1, -2, -3 и т.д., а следующие за средним – соответственно +1, +2, +3 и т.д. При четном числе уровней два срединных момента (периода) времени обозначают −1 и +1, а все последующие и предыдущие, соответственно, через два интервала: и т.д.

При таком порядке отсчета времени (от середины ряда) , система нормальных уравнений упрощается до следующих двух уравнений, каждое из которых решается самостоятельно:

Важное значение при построении модели временного ряда имеет учет сезонных и циклических колебаний. Простейшим подходом, позволяющим учесть в модели сезонные и циклические колебания, является расчет значений сезонной/циклической компоненты и построение аддитивной и мультипликативной модели временного ряда.

Общий вид аддитивной модели следующий: Y=T+S+E . Эта модель предполагает, что каждый уровень временного уровня ряда может быть представлен как сумма трендовой T , сезонной S и случайной компонент. Общий вид мультипликативной модели выглядит как: Y=T∙S∙E .

Выбор одной из двух моделей проводится на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету T, S, E для каждого уровня ряда. Этапы построения модели включают в себя следующие шаги:

1. Выравнивание исходного ряда методом скользящей средней

2. Расчет значений сезонной компоненты S .

3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной (T+E) или мультипликативной (T∙E) модели.

4. Аналитическое выравнивание уровней (T+E) или (T∙E) и расчет значений T с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений (T+E) или (T∙E) .

6. Расчет абсолютных и/или относительных ошибок. Если полученные значения не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок E для анализа взаимосвязи исходного ряда и других временных рядов.

Рассмотрим другие методы анализа взаимосвязи, предположив что изучаемые временные ряды не содержат периодических колебаний. Допустим, что изучается зависимость между рядами х и у . Для количественной характеристики этой зависимости используется линейный коэффициент корреляции. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким. Однако это не говорит о том, что х причина у . Высокий коэффициент корреляции в данном случае – это результат того, что х и у зависят от времени, или содержат тенденцию. При этом одинаковую или противоположную тенденцию могут иметь ряды, совершенно не связанные друг с другом причинно-следственной зависимостью. Например, коэффициент корреляции между численностью выпускников вузов и числом домов отдыха в РФ в период с 1970-1990 г. составил 0,8. Однако, это не говорит о том, что количество домов отдыха способствует росту числа выпускников или наоборот.

Для того чтобы получить коэффициенты корреляции, характеризующие причинно-следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряду, которую устраняют одним из методов.

Предположим, что по двум временным рядам х t и у t строится уравнение парной регрессии линейной регрессии вида: . наличие тенденции в каждом из этих временных рядов означает, что на зависимую у t и независимую х t переменные модели оказывает воздействие фактор времени, который непосредственно в модели не учтен. Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков за текущий и предыдущие моменты времени, которая получила название автокорреляции в остатках.

Автокорреляция в остатках – это нарушение одной из основных предпосылок МНК – предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении обобщенного МНК.

Для устранения тенденции используются две группы методов:

Методы, основанные на преобразовании уровней исходного ряда в новые переменные, не содержащие тенденции (метод последовательных разностей и метод отклонения от трендов);

Методы, основанные на изучении взаимосвязи исходных уровней временных рядов при элиминировании воздействия фактора времени на зависимую и независимую переменные модели (включение в модель регрессии по временным рядам фактора времени).

Пусть имеются два временных ряда и , каждый из которых содержит трендовую компоненту Т и случайную составляющую . Аналитическое выравнивание каждого из этих рядов позволяет найти параметры соответствующих уравнений трендов и определить расчетные по тренду уровни и соответственное. Эти расчетные значения можно принять за оценку трендовой компоненты Т каждого ряда. Поэтому влияние тенденции можно устранить путем вычитания расчетных значений уровней ряда из фактических. Эту процедуру проделывают для каждого временного ряда в модели. Дальнейший анализ взаимосвязи рядов проводят с использованием не исходных уровней, а отклонений от тренда и . Именно в этом и заключается метод отклонений от тренда.

В ряде случаев вместо аналитического выравнивания временного ряда с целью устранения тенденции можно применить более простой метод – метод последовательных разностей. Если временной ряд содержит ярко выраженную линейную тенденцию, ее можно устранить путем замены исходных уровней ряда цепными абсолютными приростами (первыми разностями).

Пусть , .

Коэффициент b – константа, которая не зависит от времени. При наличии сильной линейной тенденции отставки достаточно малы и в соответствии с предпосылками МНК носят случайный характер. Поэтому первые разности уровней ряда не зависят от переменной времени, их можно использовать для дальнейшего анализа.

Если временной ряд содержит тенденцию в форме параболы второго порядка, то для ее устранения можно заменить исходные уровни ряда на вторые разности: .

Если тенденции временного ряда соответствует экспоненциальной, или степенной, тренд, метод последовательных разностей следует применять не к исходным уровням ряда, а к их логарифмам.

Модель вида: также относится к группе моделей, включающих фактор времени. Преимущество данной модели перед методами отклонений от трендов и последовательных разностей состоит в том, что она позволяет учесть всю информацию, содержащуюся в исходных данных, поскольку значения и – это уровни исходных временных рядов. Кроме того, модель строится по всей совокупности данных за рассматриваемый период в отличие от метода последовательных разностей, который приводит к потере числа наблюдений. Параметры этой модели определяются обычным МНК.

Пример. Построим уравнение тренда по исходным данным таблицы 4.4.

Таблица 4.4

Расходы на конечное потребление и совокупный доход (усл. ед.)

Система нормальных уравнений имеет вид:

По исходным данным рассчитаем необходимые величины и подставим в систему:

Уравнение регрессии имеет вид: .

Интерпретация параметров уравнения следующая: характеризует, что при увеличении совокупного дохода на 1 д.е. расходы на конечное потребление возрастут в среднем на 0,49 д.е в условиях существования неизменной тенденции. Параметр означает, что воздействие всех факторов, кроме совокупного дохода, на расходы на конечное потребление приведет к его среднегодовому абсолютному приросту на 0,63 д.е.

Рассмотрим уравнение регрессии вида: . Для каждого момента времени значение компоненты определяются как или . Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками МНК остатки должны быть случайными (рис. 4.4).


Рис. 4.4 Случайные остатки

Однако при моделировании временных рядов нередко встречаются ситуации, когда остатки содержат тенденцию или циклические колебания (рис. 4.5). Это говорит о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят о наличии автокорреляции в остатках.



а) б)

Рис. 4.5 Убывающая тенденция (а ) и циклические колебания (б )

в остатках

Автокорреляция случайной составляющей - корреляционная зависимость текущих и предыдущих значений случайной составляющей. Последствия автокорреляции случайной составляющей:

Коэффициенты регрессии становятся неэффективными;

Стандартные ошибки коэффициентов регрессии становятся заниженными, а значения t –критерия завышенными.

Для определения автокорреляции остатков известны два наиболее распространенных метода определения автокорреляции остатков. Первый метод – это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод – это использование критерия Дарбина-Уотсона, который сводится к проверке гипотезы:

Н0 (основная гипотеза): автокорреляция отсутствует;

Н1 и Н2 (альтернативные гипотезы): присутствует положительная или отрицательная автокорреляция в остатках соответственно.

Для проверки основной гипотезы используется статистика критерия Дарбина-Уотсона:

где .

На больших выборках d≈2(1- ), где - коэффициент автокорреляции 1-го порядка.

.

Если в остатках существует полная положительная автокорреляция и =1, то d=0; если в остатках есть полная отрицательная автокорреляция, то = -1 и d=4; если автокорреляция остатков отсутствует, то = 0, то d=2. Следовательно, 0 .

Существуют специальные статистические таблицы для определения нижней и верхней критических границ d -статистики – d L и d U . Они определяются в зависимости от n, числа независимых переменных k и уровня значимости .

Если d набл ‹d L , то принимается гипотеза Н1: положительная автокорреляция.

Если d и ‹d набл ‹2,

Если 2‹d набл ‹4-d и, то принимается гипотеза Н0: автокорреляции нет.

Если d набл ›4-d L , то принимается гипотеза Н2: отрицательная автокорреляция.

Если 4-d и ‹d набл ‹4-d L , и d L ‹d набл ‹d и, то имеет место случай неопределенности.



0 d L d U 2 4- d U 4- d L 4

Рис. 4.6 Алгоритм проверки гипотезы о наличии автокорреляции остатков

Для применения критерия Дарбина-Уотсона есть ограничения. Он неприменим для моделей, включающих в качестве независимых переменных лаговые значения результативного признака, т.е. к моделям авторегрессии. Методика направлена только на выявление автокорреляции остатков первого порядка. Результаты являются более достоверными при работе с большими выборками.

В тех случаях, когда имеет место автокорреляция остатков, для определения оценок параметров a, b используют обобщенный методМНК, который заключается в последовательности следующих шагов:

1. Преобразовать исходные переменные y t и x t к виду

2. Применив обычный МНК к уравнению , где определить оценки параметров и b.

4. Выписать исходное уравнение .

Среди эконометрических моделей, построенных по временным данным, выделяют динамические модели.

Эконометрическая модель является динамической , если в данный момент времени t она учитывает значения входящих в нее переменных, относящихся как к текущему, так и к предыдущим моментам времени, т.е. эта модель отражает динамику исследуемых переменных в каждый момент времени.

Существует два основных типа динамических эконометрических моделей. К моделям первого типа относятся модели авторегрессии и модели с распределенным лагом, в которых значение переменной за прошлые периоды времени (лаговые переменные) непосредственно включены в модель. Модели второго типа учитывают динамическую информацию в неявном виде. В эти модели включены переменные, характеризующие ожидаемый и желаемый уровень результата, или один из факторов в момент времени t.

Модель с распределенным лагом имеет вид:

Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику. Во-первых, оценка параметров моделей авторегрессии, а в большинстве случаев и моделей распределенным лагом не может быть проведена с помощью обычного МНК ввиду нарушения его предпосылок и требует специальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в третьих, между моделями с распределенным лагом и моделями авторегрессии имеется определенная взаимосвязь, и в некоторых случаях необходимо осуществить переход от одноного типа моделей к другому.

Рассмотрим модель с распределенным лагом в предположении, что максимальная величина лага конечна:

Даная модель говорит о том, что если в некоторый момент времени t происходит изменение независимой переменной x , то это изменение будет влиять на значения переменной y в течение l следующих моментов времени.

Коэффициент регрессии b 0 при переменной x t характеризует среднее абсолютное изменение y t при изменении x t на 1 ед. своего измерения в некоторый фиксированный момент времени t , без учета воздействия лаговых значений фактора x. Этот коэффициент называется краткосрочным мультипликатором.

В момент t+1 воздействие факторной переменной x t на результат y t составит (b 0 +b 1) условных единиц; в момент времени t+2 это воздействие можно охарактеризовать суммой (b 0 +b 1 +b 2) и т.д. Полученные таким образом суммы называются промежуточными мультипликаторами .

С учетом конечной величины лага можно сказать, что изменение переменной x t в момент времени t на 1 условную единицу приведет к общему изменению результата через l моментов времени (b 0 +b 1 +b 2 +…+b l ).

Введем следующее обозначение: b=(b 0 +b 1 +b 2 +…+b l ). Величину b называется долгосрочным мультипликатором , который показывает абсолютное изменение в долгосрочном периоде t+l результата y под влиянием изменения на 1 ед. фактора x .

Величины называются относительными коэффициентами модели с распределенным лагом. Если все коэффициенты b j имеют одинаковые знаки,то . Относительные коэффициенты являются весами для соответствующих коэффициентов b j . Каждый из них измеряет долю общего изменения результативного признака в момент времени t+j .

Зная величины , с помощью стандартных формул можно определить еще две важные характеристики модели множественной регрессии: величину среднего и медианного лагов.

Средний лаг рассчитывается по формуле средней арифметической взвешенной:

и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора x в момент t. Если значение среднего лага небольшое, то это говорит о довольно быстром реагировании y на изменение x. Высокое значение среднего лага говорит о том, что воздействие фактора на результат будет сказываться в течение длительного периода времени.

Медианный лаг (L Me) – это величина лага, для которого период, в течение которого . Это тот период времени, в течение которого с момента времени t будет реализована половина общего воздействия фактора на результат.

Изложенные выше приемы анализа параметров модели с распределенным лагом действительны только в предположении, что все коэффициенты при текущем и лаговых значениях исследуемого фактора имеют одинаковые знаки. Это предположение вполне оправдано с экономической точки зрения: воздействие одного и того же фактора на результат должно быть однонаправленным независимо от того, с каким временным лагом измеряется сила или теснота связи между этими признаками. Однако на практике получить статистически значимую модель, параметры которой имели бы одинаковые знаки, особенно при большой величине лага l , чрезвычайно сложно.

Применение обычного МНК к таким моделям в большинстве случаев затруднительно по следующим причинам:

Текущие и лаговые значения независимой переменной, как правило, тесно связаны друг с другом, тем самым оценка параметров модели проводится в условиях высокой мультиколлинеарности;

При большой величине лага снижается число наблюдений, по которому строится модель, и увеличивается число ее факторных признаков, что ведет к потере числа степеней свободы в модели;

В моделях с распределенным лагом часто возникает проблема автокорреляции остатков.

Как и в модели с распределенным лагом, b 0 в этой модели характеризует краткосрочное изменение y t под воздействием изменения x t на 1 ед. Однако промежуточные и долгосрочный мультипликаторы в модели авторегрессии несколько иные. К моменту времени t+1 результат y t изменился под воздействием изменения изучаемого фактора в момент времени t на b 0 единиц, а y t +1 – под воздействием своего изменения в непосредственно предшествующим момент времени на с 1 единиц. Таким образом, общее абсолютное изменение результата в момент t+1 составит b 0 с 1 . Аналогично в момент времени t+2 абсолютное изменение результатасоставит b 0 с 1 2 единиц и т.д. Следовательно, долгосрочный мультипликатор в модели авторегрессии можно рассчитать как сумму краткосрочного и промежуточного мультипликаторов:

Такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основаны на предпосылке о наличии бесконечного лага в воздействии текущего значения зависимой переменной на ее будущие значения.

Пример. Предположим, по данным о динамике показателей потребления и дохода в регионе была получена модель авторегрессии, описывающая зависимость среднедушевого объема потребления за год (С, млн. руб.) от среднедушевого совокупного годового дохода (Y, млн. руб.) и объема потребления предшествующего года:

.

Краткосрочный мультипликатор равен 0,85. В этой модели он представляет собой предельную склонность к потреблению в краткосрочном периоде. Следовательно, увеличение среднедушевого совокупного дохода на 1 млн. руб. приводит к росту объема потребления в тот же год в среднем на 850 тыс. руб. Долгосрочную предельную склонность к потреблению в данной модели можно определить как

.

В долгосрочной перспективе рост среднедушевого совокупного дохода на 1 млн. руб. приведет к росту объема потребления в среднем на 944 тыс. руб. Промежуточные показатели предельной склонности к потреблению можно определить, рассчитав необходимые частные суммы за соответствующие периоды времени. Например, для момента времени t+1

  • IX. Организация и порядок осуществления денежных расчетов на предприятия
  • VIII. Задания для выполнения в процессе самоподготовки. 1. Напишите формулу расчета лейкоцитарного индекса интоксикации
  • Авансовые расчеты и налоговая декларация. Налогоплательщики представляют налоговые расчеты по авансовым платежам по налогу не позднее 30 календарных дней с даты окончания соответствующего отчетного

  • Приняв в качестве гипотетической функции теоретических уровней прямую , определим параметры последней:

    Решение этой системы можно осуществить по формулам:

    Отсюда искомое уравнение тренда: . Подставляя в полученное уравнении значения 1, 2, 3, 4, 5, определяем теоретические уровни ряда (см. предпоследнюю графу табл. 4.3). Сравнивая значения эмпирических и теоретических уровней, видим, что они близки, т.е. можно сказать, что найденное уравнение весьма удачно характеризует основную тенденцию изменения уровней именно как линейную функцию.

    Система нормальных уравнений упрощается, если отсчет времени ведется от середины ряда. Например, при нечетном числе уровней серединная точка (год, месяц) принимается за нуль. Тогда предшествующие периоды обозначаются соответственно -1, -2, -3 и т.д., а следующие за средним – соответственно +1, +2, +3 и т.д. При четном числе уровней два срединных момента (периода) времени обозначают −1 и +1, а все последующие и предыдущие, соответственно, через два интервала: и т.д.

    При таком порядке отсчета времени (от середины ряда) , система нормальных уравнений упрощается до следующих двух уравнений, каждое из которых решается самостоятельно:

    Важное значение при построении модели временного ряда имеет учет сезонных и циклических колебаний. Простейшим подходом, позволяющим учесть в модели сезонные и циклические колебания, является расчет значений сезонной/циклической компоненты и построение аддитивной и мультипликативной модели временного ряда.

    Общий вид аддитивной модели следующий: Y=T+S+E . Эта модель предполагает, что каждый уровень временного уровня ряда может быть представлен как сумма трендовой T , сезонной S и случайной компонент. Общий вид мультипликативной модели выглядит как: Y=T∙S∙E .

    Выбор одной из двух моделей проводится на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

    Построение аддитивной и мультипликативной моделей сводится к расчету T, S, E для каждого уровня ряда. Этапы построения модели включают в себя следующие шаги:



    1. Выравнивание исходного ряда методом скользящей средней

    2. Расчет значений сезонной компоненты S .

    3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной (T+E) или мультипликативной (T∙E) модели.

    4. Аналитическое выравнивание уровней (T+E) или (T∙E) и расчет значений T с использованием полученного уравнения тренда.

    5. Расчет полученных по модели значений (T+E) или (T∙E) .

    6. Расчет абсолютных и/или относительных ошибок. Если полученные значения не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок E для анализа взаимосвязи исходного ряда и других временных рядов.

    Рассмотрим другие методы анализа взаимосвязи, предположив что изучаемые временные ряды не содержат периодических колебаний. Допустим, что изучается зависимость между рядами х и у . Для количественной характеристики этой зависимости используется линейный коэффициент корреляции. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким. Однако это не говорит о том, что х причина у . Высокий коэффициент корреляции в данном случае – это результат того, что х и у зависят от времени, или содержат тенденцию. При этом одинаковую или противоположную тенденцию могут иметь ряды, совершенно не связанные друг с другом причинно-следственной зависимостью. Например, коэффициент корреляции между численностью выпускников вузов и числом домов отдыха в РФ в период с 1970-1990 г. составил 0,8. Однако, это не говорит о том, что количество домов отдыха способствует росту числа выпускников или наоборот.

    Для того чтобы получить коэффициенты корреляции, характеризующие причинно-следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряду, которую устраняют одним из методов.

    Предположим, что по двум временным рядам х t и у t строится уравнение парной регрессии линейной регрессии вида: . наличие тенденции в каждом из этих временных рядов означает, что на зависимую у t и независимую х t переменные модели оказывает воздействие фактор времени, который непосредственно в модели не учтен. Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков за текущий и предыдущие моменты времени, которая получила название автокорреляции в остатках.

    Автокорреляция в остатках – это нарушение одной из основных предпосылок МНК – предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении обобщенного МНК.

    Для устранения тенденции используются две группы методов:

    Методы, основанные на преобразовании уровней исходного ряда в новые переменные, не содержащие тенденции (метод последовательных разностей и метод отклонения от трендов);

    Методы, основанные на изучении взаимосвязи исходных уровней временных рядов при элиминировании воздействия фактора времени на зависимую и независимую переменные модели (включение в модель регрессии по временным рядам фактора времени).

    Пусть имеются два временных ряда и , каждый из которых содержит трендовую компоненту Т и случайную составляющую . Аналитическое выравнивание каждого из этих рядов позволяет найти параметры соответствующих уравнений трендов и определить расчетные по тренду уровни и соответственное. Эти расчетные значения можно принять за оценку трендовой компоненты Т каждого ряда. Поэтому влияние тенденции можно устранить путем вычитания расчетных значений уровней ряда из фактических. Эту процедуру проделывают для каждого временного ряда в модели. Дальнейший анализ взаимосвязи рядов проводят с использованием не исходных уровней, а отклонений от тренда и . Именно в этом и заключается метод отклонений от тренда.

    В ряде случаев вместо аналитического выравнивания временного ряда с целью устранения тенденции можно применить более простой метод – метод последовательных разностей. Если временной ряд содержит ярко выраженную линейную тенденцию, ее можно устранить путем замены исходных уровней ряда цепными абсолютными приростами (первыми разностями).

    Коэффициент b – константа, которая не зависит от времени. При наличии сильной линейной тенденции отставки достаточно малы и в соответствии с предпосылками МНК носят случайный характер. Поэтому первые разности уровней ряда не зависят от переменной времени, их можно использовать для дальнейшего анализа.

    Если временной ряд содержит тенденцию в форме параболы второго порядка, то для ее устранения можно заменить исходные уровни ряда на вторые разности: .

    Если тенденции временного ряда соответствует экспоненциальной, или степенной, тренд, метод последовательных разностей следует применять не к исходным уровням ряда, а к их логарифмам.

    Модель вида: также относится к группе моделей, включающих фактор времени. Преимущество данной модели перед методами отклонений от трендов и последовательных разностей состоит в том, что она позволяет учесть всю информацию, содержащуюся в исходных данных, поскольку значения и – это уровни исходных временных рядов. Кроме того, модель строится по всей совокупности данных за рассматриваемый период в отличие от метода последовательных разностей, который приводит к потере числа наблюдений. Параметры этой модели определяются обычным МНК.

    Пример. Построим уравнение тренда по исходным данным таблицы 4.4.

    Таблица 4.4

    Расходы на конечное потребление и совокупный доход (усл. ед.)

    Система нормальных уравнений имеет вид:

    По исходным данным рассчитаем необходимые величины и подставим в систему:

    Уравнение регрессии имеет вид: .

    Интерпретация параметров уравнения следующая: характеризует, что при увеличении совокупного дохода на 1 д.е. расходы на конечное потребление возрастут в среднем на 0,49 д.е в условиях существования неизменной тенденции. Параметр означает, что воздействие всех факторов, кроме совокупного дохода, на расходы на конечное потребление приведет к его среднегодовому абсолютному приросту на 0,63 д.е.

    Рассмотрим уравнение регрессии вида: . Для каждого момента времени значение компоненты определяются как или . Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками МНК остатки должны быть случайными (рис. 4.4).


    Рис. 4.4 Случайные остатки

    Однако при моделировании временных рядов нередко встречаются ситуации, когда остатки содержат тенденцию или циклические колебания (рис. 4.5). Это говорит о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят о наличии автокорреляции в остатках.



    а) б)

    Рис. 4.5 Убывающая тенденция (а ) и циклические колебания (б )

    в остатках

    Автокорреляция случайной составляющей - корреляционная зависимость текущих и предыдущих значений случайной составляющей. Последствия автокорреляции случайной составляющей:

    Коэффициенты регрессии становятся неэффективными;

    Стандартные ошибки коэффициентов регрессии становятся заниженными, а значения t –критерия завышенными.

    Для определения автокорреляции остатков известны два наиболее распространенных метода определения автокорреляции остатков. Первый метод – это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод – это использование критерия Дарбина-Уотсона, который сводится к проверке гипотезы:

    Н0 (основная гипотеза): автокорреляция отсутствует;

    Н1 и Н2 (альтернативные гипотезы): присутствует положительная или отрицательная автокорреляция в остатках соответственно.

    Для проверки основной гипотезы используется статистика критерия Дарбина-Уотсона:

    где .

    На больших выборках d≈2(1- ), где - коэффициент автокорреляции 1-го порядка.

    .

    Если в остатках существует полная положительная автокорреляция и =1, то d=0; если в остатках есть полная отрицательная автокорреляция, то = -1 и d=4; если автокорреляция остатков отсутствует, то = 0, то d=2. Следовательно, 0.

    Существуют специальные статистические таблицы для определения нижней и верхней критических границ d -статистики – d L и d U . Они определяются в зависимости от n, числа независимых переменных k и уровня значимости .

    Если d набл ‹d L , то принимается гипотеза Н1: положительная автокорреляция.

    Если d и ‹d набл ‹2,

    Если 2‹d набл ‹4-d и, то принимается гипотеза Н0: автокорреляции нет.

    Если d набл ›4-d L , то принимается гипотеза Н2: отрицательная автокорреляция.

    Если 4-d и ‹d набл ‹4-d L , и d L ‹d набл ‹d и, то имеет место случай неопределенности.


    0 d L d U 2 4- d U 4- d L 4

    Рис. 4.6 Алгоритм проверки гипотезы о наличии автокорреляции остатков

    Для применения критерия Дарбина-Уотсона есть ограничения. Он неприменим для моделей, включающих в качестве независимых переменных лаговые значения результативного признака, т.е. к моделям авторегрессии. Методика направлена только на выявление автокорреляции остатков первого порядка. Результаты являются более достоверными при работе с большими выборками.

    В тех случаях, когда имеет место автокорреляция остатков, для определения оценок параметров a, b используют обобщенный метод МНК, который заключается в последовательности следующих шагов:

    1. Преобразовать исходные переменные y t и x t к виду

    2. Применив обычный МНК к уравнению , где определить оценки параметров и b.

    4. Выписать исходное уравнение .

    Среди эконометрических моделей, построенных по временным данным, выделяют динамические модели.

    Эконометрическая модель является динамической , если в данный момент времени t она учитывает значения входящих в нее переменных, относящихся как к текущему, так и к предыдущим моментам времени, т.е. эта модель отражает динамику исследуемых переменных в каждый момент времени.

    Существует два основных типа динамических эконометрических моделей. К моделям первого типа относятся модели авторегрессии и модели с распределенным лагом, в которых значение переменной за прошлые периоды времени (лаговые переменные) непосредственно включены в модель. Модели второго типа учитывают динамическую информацию в неявном виде. В эти модели включены переменные, характеризующие ожидаемый и желаемый уровень результата, или один из факторов в момент времени t.

    Модель с распределенным лагом имеет вид:

    Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику. Во-первых, оценка параметров моделей авторегрессии, а в большинстве случаев и моделей распределенным лагом не может быть проведена с помощью обычного МНК ввиду нарушения его предпосылок и требует специальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в третьих, между моделями с распределенным лагом и моделями авторегрессии имеется определенная взаимосвязь, и в некоторых случаях необходимо осуществить переход от одноного типа моделей к другому.

    Рассмотрим модель с распределенным лагом в предположении, что максимальная величина лага конечна:

    Даная модель говорит о том, что если в некоторый момент времени t происходит изменение независимой переменной x , то это изменение будет влиять на значения переменной y в течение l следующих моментов времени.

    Коэффициент регрессии b 0 при переменной x t характеризует среднее абсолютное изменение y t при изменении x t на 1 ед. своего измерения в некоторый фиксированный момент времени t , без учета воздействия лаговых значений фактора x. Этот коэффициент называется краткосрочным мультипликатором.

    В момент t+1 воздействие факторной переменной x t на результат y t составит (b 0 +b 1) условных единиц; в момент времени t+2 это воздействие можно охарактеризовать суммой (b 0 +b 1 +b 2) и т.д. Полученные таким образом суммы называются промежуточными мультипликаторами .

    С учетом конечной величины лага можно сказать, что изменение переменной x t в момент времени t на 1 условную единицу приведет к общему изменению результата через l моментов времени (b 0 +b 1 +b 2 +…+b l ).

    Введем следующее обозначение: b=(b 0 +b 1 +b 2 +…+b l ). Величину b называется долгосрочным мультипликатором , который показывает абсолютное изменение в долгосрочном периоде t+l результата y под влиянием изменения на 1 ед. фактора x .

    Величины называются относительными коэффициентами модели с распределенным лагом. Если все коэффициенты b j имеют одинаковые знаки, то . Относительные коэффициенты являются весами для соответствующих коэффициентов b j . Каждый из них измеряет долю общего изменения результативного признака в момент времени t+j .

    Зная величины , с помощью стандартных формул можно определить еще две важные характеристики модели множественной регрессии: величину среднего и медианного лагов.

    Средний лаг рассчитывается по формуле средней арифметической взвешенной:

    и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора x в момент t. Если значение среднего лага небольшое, то это говорит о довольно быстром реагировании y на изменение x. Высокое значение среднего лага говорит о том, что воздействие фактора на результат будет сказываться в течение длительного периода времени.

    Медианный лаг (L Me) – это величина лага, для которого период, в течение которого . Это тот период времени, в течение которого с момента времени t будет реализована половина общего воздействия фактора на результат.

    Изложенные выше приемы анализа параметров модели с распределенным лагом действительны только в предположении, что все коэффициенты при текущем и лаговых значениях исследуемого фактора имеют одинаковые знаки. Это предположение вполне оправдано с экономической точки зрения: воздействие одного и того же фактора на результат должно быть однонаправленным независимо от того, с каким временным лагом измеряется сила или теснота связи между этими признаками. Однако на практике получить статистически значимую модель, параметры которой имели бы одинаковые знаки, особенно при большой величине лага l , чрезвычайно сложно.

    Применение обычного МНК к таким моделям в большинстве случаев затруднительно по следующим причинам:

    Текущие и лаговые значения независимой переменной, как правило, тесно связаны друг с другом, тем самым оценка параметров модели проводится в условиях высокой мультиколлинеарности;

    При большой величине лага снижается число наблюдений, по которому строится модель, и увеличивается число ее факторных признаков, что ведет к потере числа степеней свободы в модели;

    В моделях с распределенным лагом часто возникает проблема автокорреляции остатков.

    Как и в модели с распределенным лагом, b 0 в этой модели характеризует краткосрочное изменение y t под воздействием изменения x t на 1 ед. Однако промежуточные и долгосрочный мультипликаторы в модели авторегрессии несколько иные. К моменту времени t+1 результат y t изменился под воздействием изменения изучаемого фактора в момент времени t на b 0 единиц, а y t +1 – под воздействием своего изменения в непосредственно предшествующим момент времени на с 1 единиц. Таким образом, общее абсолютное изменение результата в момент t+1 составит b 0 с 1 . Аналогично в момент времени t+2 абсолютное изменение результата составит b 0 с 1 2 единиц и т.д. Следовательно, долгосрочный мультипликатор в модели авторегрессии можно рассчитать как сумму краткосрочного и промежуточного мультипликаторов:

    Такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основаны на предпосылке о наличии бесконечного лага в воздействии текущего значения зависимой переменной на ее будущие значения.

    Пример. Предположим, по данным о динамике показателей потребления и дохода в регионе была получена модель авторегрессии, описывающая зависимость среднедушевого объема потребления за год (С, млн. руб.) от среднедушевого совокупного годового дохода (Y, млн. руб.) и объема потребления предшествующего года:

    .

    Краткосрочный мультипликатор равен 0,85. В этой модели он представляет собой предельную склонность к потреблению в краткосрочном периоде. Следовательно, увеличение среднедушевого совокупного дохода на 1 млн. руб. приводит к росту объема потребления в тот же год в среднем на 850 тыс. руб. Долгосрочную предельную склонность к потреблению в данной модели можно определить как

    .

    В долгосрочной перспективе рост среднедушевого совокупного дохода на 1 млн. руб. приведет к росту объема потребления в среднем на 944 тыс. руб. Промежуточные показатели предельной склонности к потреблению можно определить, рассчитав необходимые частные суммы за соответствующие периоды времени. Например, для момента времени t+1 получим:

    Это означает, что увеличение среднедушевого совокупного дохода в текущем периоде на 1 млн. руб. ведет к увеличению объема потребления в среднем на 935 тыс. руб. в ближайшем следующем периоде.

    Линейное уравнение тренда имеет вид y = at + b.

    Параметры уравнений функции тренда находят с помощью теории корреляции методом наименьших квадратов.

    1.Метод наименьших квадратов.
    Метод наименьших квадратов МНК), является одним из способов противостоять ошибкам измерений.(Как в Физике погрешность отклонений)
    Этот метод как правило используют для нахождения параметров уравнений (Линий, гипербол парабол и т.д.)
    Этот способ заключается в минимизации суммы квадратов отклонений.
    Смысл МНК можно выразить через вот этот график

    2. Анализ точности определения оценок параметров уравнения тренда(по таблице стьюдента находим ТТабл и делаем интервальный прогноз,т.е. выявляем реднеквадратическую ошибку)

    3.Проверка гипотез относительно коэффициентов линейного уравнения тренда(статистика критерий стьюдента,фишера)

    Проверка на наличие автокорреляции остатков.
    Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
    Автокорреляция (последовательная корреляция) Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
    Проверка наличия гетероскедастичности .
    1) Методом графического анализа остатков .
    В этом случае по оси абсцисс откладываются значения объясняющей переменной X, а по оси ординат либо отклонения e i , либо их квадраты e 2 i .
    Если имеется определенная связь между отклонениями, то гетероскедастичность имеет место. Отсутствие зависимости скорее всего будет свидетельствовать об отсутствии гетероскедастичности.
    2) При помощи теста ранговой корреляции Спирмена.
    Коэффициент ранговой корреляции Спирмена.

    36. Методы измерения устойчивости тенденций динамики (коэффициент рангов Спирмена).

    Понятие «устойчивость» используется в весьма различных смыслах. По отношению кстатистическому изучению динамики мы рассмотрим два аспекта этого понятия: 1) устойчивостькак категория, противоположная колеблемости; 2) устойчивость направленности изменений, т.е. устойчивость тенденции.

    Устойчивость во втором смысле характеризует не сами по себе уровни, а процесс ихнаправленного изменения. Можно узнать, например, насколько устойчив процесс сокращенияудельных затрат ресурсов на производство единицы продукции, является ли устойчивойтенденция снижения детской смертности и т. д. С этой точки зрения полной устойчивостьюнаправленного изменения уровней динамического ряда следует считать такое изменение, впроцессе которого каждый следующий уровень либо выше всех предшествующих (устойчивыйрост), либо ниже всех предшествующих (устойчивое снижение). Всякое нарушение строгоранжированной последовательности уровней свидетельствует о неполной устойчивостиизменений.


    Из определения понятия устойчивости тенденции вытекает и метод построения ее показателя.В качестве показателя устойчивости можно использовать коэффициент корреляции рангов Ч.Спирмэна (Spearman) - rx.

    где п - число уровней;

    I - разность рангов уровней и номеров периодов времени.

    При полном совпадении рангов уровней, начиная с наименьшего, и номеров периодов (моментов)времени по их хронологическому порядку коэффициент корреляции рангов равен +1. Этозначение соответствует случаю полной устойчивости возрастания уровней. При полнойпротивоположности рангов уровней рангам лет коэффициент Спирмэна равен -1, что означаетполную устойчивость процесса сокращения уровней. При хаотическом чередовании ранговуровней коэффициент близок к нулю, это означает неустойчивость какой-либо тенденции.

    Отрицательное значение rx указывает на наличие тенденции снижения уровней, причемустойчивость этой тенденции ниже средней.

    При этом следует иметь в виду, что даже при 100%-ной устойчивости тенденции в рядудинамики может быть колеблемость уровней, и коэффициент их устойчивости будет ниже100%. При слабой колеблемости, но еще более слабой тенденции, напротив, возможен высокийкоэффициент устойчивости уровней, но близкий к нулю коэффициент устойчивости тренда. Вцелом же оба показателя связаны, конечно, прямой зависимостью: чаще всего большаяустойчивость уровней наблюдается одновременно с большей устойчивостью тренда.

    37. Моделирование тенденции ряда динамики при наличии структурных изменений.

    От сезонных и циклических колебаний следует отличать единовременные изменения характера тенденции временного ряда, вызванные структурными изменениями в экономике или иными факторами. В этом случае, начиная с некоторого момента времени t, происходит изменение характера динамики изучаемого показателя, что приводит к изменению параметров тренда, описывающего эту динамику.

    Момент t сопровождается значительными изменениями ряда факторов, оказывающих сильное воздействие на изучаемый показатель Моделирование тенденции временного ряда при наличии структурных изменений.. Чаще всего эти изменения вызваны изменениями в общеэкономической ситуации или событиями глобального характера, приведшими к изменению структуры экономики. Если исследуемый временной ряд включает в себя соответствующий момент времени, то одной из задач его изучения становится выяснение вопроса о том, значительно ли повлияли общие структурные изменения на характер этой тенденции.

    Если это влияние значимо, то для моделирования тенденции данного временного ряда следует использовать кусочно-линейные модели регрессии, т.е. разделить исходную совокупность на 2 подсовокупности (до момента времени t и после) и строить отдельно по каждой подсовокупности уравнения линейной регрессии.

    Если структурные изменения незначительно повлияли на характер тенденции ряда Моделирование тенденции временного ряда при наличии структурных изменений., то ее можно писать с помощью единого для всей совокупности данных уравнения тренда.

    Каждый из описанных выше подходов имеет свои положительные и отрицательные стороны. При построении кусочно-линейной модели снижается остаточная сумма квадратов по сравнению с единым для всей совокупности уравнением тренда. Но разделение совокупности на части ведет к потере числа наблюдений, и к снижению числа степеней свободы в каждом уравнении кусочно-линейной модели. Построение единого уравнения тренда позволяет сохранить число наблюдений исходной совокупности, но остаточная сумма квадратов по этому уравнению будет выше по сравнению с кусочно-линейной моделью. Очевидно, что выбор модели зависит от соотношения между снижением остаточной дисперсии и потерей числа степеней свободы при переходе от единого уравнения регрессии к кусочно-линейной модели.

    38. Регрессионный анализ связных динамических рядов.

    Многомерные временные ряды, показывающие зависимость результативного признака от одного или нескольких факторных, называютсвязными рядами динамики. Применение методов наименьших квадратов для обработки рядов динамики не требует выдвижения никаких предположений о законах распределения исходных данных. Однако при использовании метода наименьших квадратов для обработки связных рядов следует учитывать наличие автокорреляции (авторегрессии), которая не учитывалась при обработке одномерных рядов динамики, поскольку ее наличие способствовало более плотному и четкому выявлению тенденции развития рассматриваемого социально – экономического явления во времени.

    Выявление автокорреляции в уровнях ряда динамики

    В рядах динамики экономических процессов между уровнями, особенно близко расположенными, существует взаимосвязь. Ее удобно представить в виде корреляционной зависимости между рядами y1,y2,y3,…..yn h y1+h, y2+h,…, yn+h. Временное смещение L называется сдвигом,а само явление взаимосвязи – автокорреляцией.

    Автокорреляционная зависимость особенно существенна между последующими и предшествующими уровнями ряда динамики.

    Различают два вида автокорреляции:

    Автокорреляция в наблюдениях за одной или более переменными;

    Автокорреляция ошибок или автокорреляция в отклонениях от тренда.

    Наличие последней приводит к искажению величин средних квадратических ошибок коэффициентов регрессии, что затрудняет построение доверительных интервалов для коэффициентов регрессии, а так же проверку их значимости.

    Автокорреляцию измеряют при помощи циклического коэффициента автокорреляции, который может рассчитываться не только между соседними уровнями, т.е. сдвинутыми на один период, но и между сдвинутыми на любое число единиц времени (L). Этот сдвиг, именуемыйвременным лагом, определяет и порядок коэффициентов автокорреляции: первого порядка (при L=1), второго порядка (при L=2) и т.д. Однако наибольший интерес для исследования представляет вычисление нециклического коэффициента (первого порядка), так как наиболее сильные искажения результатов анализа возникают при корреляции между исходными уровнями ряда и теми же уровнями, сдвинутыми на одну единицу времени.

    Для суждения о наличии или отсутствия автокорреляции в исследуемом ряду фактическое значение коэффициентов автокорреляции сопоставляется с табличным (критическим) для 5% - го или 1% - го уровня значимости.

    Если фактическое значение коэффициента автокорреляции меньше табличного, то гипотеза об отсутствии автокорреляции в ряду может быть принята. Когда же фактическое значение больше табличного, можно сделать вывод о наличии автокорреляции в ряду динамики.

    Тренд - это закономерность описывающая подъем или падение показателя в динамике. Если изобразить любой динамический ряд (статистические данные, представляющие собой список зафиксированных значений изменяемого показателя во времени) на графике, часто выделяется определенный угол – кривая либо постепенно идет на увеличение или на уменьшение, в таких случаях принято говорить, что ряд динамики имеет тенденцию (к росту или падению соответственно).

    Тренд как модель

    Если же построить модель, описывающую это явление, то получается довольно простой и очень удобный инструмент для прогнозирования не требующий каких-либо сложных вычислений или временных затрат на проверку значимости или адекватности влияющих факторов.

    Итак, что же собой представляет тренд как модель? Это совокупность расчетных коэффициентов уравнения, которые выражают регрессионную зависимость показателя (Y) от изменения времени (t). То есть, это точно такая же регрессия, как и те, что мы рассматривали ранее, только влияющим фактором здесь выступает именно показатель времени.

    Важно!

    В расчетах под t обычно подразумевается не год, номер месяца или недели, а именно порядковый номер периода в изучаемой статистической совокупности – динамическом ряде. К примеру, если динамический ряд изучается за несколько лет, а данные фиксировались ежемесячно, то использовать обнуляющуюся нумерацию месяцев, с 1 по 12 и опять сначала, в корне неверно. Также неверно в случае, если изучение ряда начинается, к примеру, с марта месяца в качестве значения t использовать 3 (третий месяц в году), если это первое значение в изучаемой совокупности, то его порядковый номер должен быть 1.

    Модель линейного тренда

    Как и любая другая регрессия, тренд может быть как линейным (степень влияющего фактора t равна 1) так и нелинейным (степень больше или меньше единицы). Так как линейная регрессия является самой простейшей, хотя далеко не всегда самой точной, то рассмотрим более детально именно этот тип тренда.

    Общий вид уравнения линейного тренда:

    Y(t) = a 0 + a 1 *t + Ɛ

    Где a 0 – это нулевой коэффициент регрессии, то есть, то каким будет Y в случае, если влияющий фактор будет равен нулю, a 1 – коэффициент регрессии, который выражает степень зависимости исследуемого показателя Y от влияющего фактора t, Ɛ – случайная компонента или стандартная ошибка, по сути являет собой разницу между реально существующими значениями Y и расчетными. t – это единственный влияющий фактор – время.

    Чем более выраженная тенденция роста показателя или его падения, тем будет больше коэффициент a 1 . Соответственно, предполагается, что константа a 0 совместно со случайной компонентой Ɛ отражают остальные регрессионные влияния, помимо времени, то есть всех прочих возможных влияющих факторов.

    Рассчитать коэффициенты модели можно стандартным Методом наименьших квадратов (МНК). Со всеми этими расчетами Microsoft Excel справляется на ура самостоятельно, при чем, чтобы получить модель линейного тренда либо готовый прогноз существует целых пять способов, которые мы по отдельности разберем ниже.

    Графический способ получения линейного тренда

    В этом и во всех дальнейших примерах будем использовать один и тот же динамический ряд – уровень ВВП, который вычисляется и фиксируется ежегодно, в нашем случае исследование будет проходить на периоде с 2004-го по 2012-й гг.

    Добавим к исходным данным еще один столбец, который назовем t и пометим цифрами по возрастающей порядковые номера всех зафиксированных значений ВВП за указанный период с 2004-го по 2012-й гг. – 9 лет или 9 периодов .

    Эксель добавит пустое поле – разметку под будущий график, выделяем этот график и активируем появившуюся вкладку в панели меню – Конструктор , ищем кнопку Выбрать данные , в отрывшемся окне жмем кнопочку Добавить . Всплывшее окошко предложит выбрать данные для построения диаграммы. В качестве значения поля Имя ряда выбираем ячейку, которая содержит текст, наиболее полно отвечающий названию графика. В поле Значения X указываем интервал ячеек стобца t – влияющего фактора. В поле Значения Y указываем интервал ячеек столбца с известными значениями ВВП (Y) – исследуемого показателя.

    Заполнив указанные поля, несколько раз нажимаем кнопку ОК и получаем готовый график динамики. Теперь выделяем правой кнопкой мыши саму линию графика и из появившегося контекстного меню выбираем пункт Добавить линию тренда

    Откроется окошко для настройки параметров построения линии тренда, где среди типов моделей выбираем Линейная , ставим галочки напротив пунктов Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации R2 , этого будет достаточно чтобы на графике отобразилась уже построенная линия тренда, а также математический вариант отображения модели в виде готового уравнения и показатель качества модели R 2 . Если вас интересует отображение на графике прогноза, чтобы визуально оценить отрыв исследуемого показателя укажите в поле Прогноз вперед на количество интересующих периодов.

    Собственно это все, что касается этого способа, можно конечно добавить, что отображаемое уравнение линейного тренда это и есть непосредственно сама модель, которую можно использовать, в качестве формулы, чтобы получить расчетные значения по модели и соответственно точные значения прогноза (прогноз отображаемый на графике, оценить можно лишь приблизительно), что мы и сделали в приложенному к статье примере.

    Построение линейного тренда с помощью формулы ЛИНЕЙН

    Суть этого метода сводится к поиску коэффициентов линейного тренда с помощью функции ЛИНЕЙН , затем, подставляя эти влияющие коэффициенты в уравнение, получим прогнозную модель.

    Нам потребуется выделить две рядом стоящие ячейки (на скриншоте это ячейки A38 и B38), далее в строке формул вверху (выделено красным на скриншоте выше) вызываем функцию, написав «=ЛИНЕЙН(», после чего эксель выведет подсказки того, что требуется для этой функции, а именно:

    1. выделяем диапазон с известными значениями описываемого показателя Y (в нашем случае ВВП, на скриншоте диапазон выделен синим) и ставим точку с запятой
    2. указываем диапазон влияющих факторов X (в нашем случае это показатель t, порядковый номер периодов, на скриншоте выделено зеленым) и ставим точку с запятой
    3. следующий по порядку требуемый параметр для функции – это определение того нужно ли рассчитывать константу, так как мы изначально рассматриваем модель с константой (коэффициент a 0 ), то ставим либо «ИСТИНА» либо «1» и точку с запятой
    4. далее нужно указать требуется ли расчет параметров статистики (в случае, если бы мы рассматривали этот вариант, то изначально пришлось бы выделить диапазон «под формулу» на несколько строк ниже). Указывать необходимость расчета параметров статистики, а именно стандартного значение ошибки для коэффициентов, коэффициента детерминированности, стандартной ошибки для Y, критерия Фишера, степеней свободы и пр. , есть смысл только тогда, когда вы понимаете, что они означают, в этом случае ставим либо «ИСТИНА», либо «1». В случае упрощенного моделирования, которому мы пытаемся научиться, на этом этапе прописывания формулы, ставим «ЛОЖЬ» либо «0» и добавляем после закрывающую скобочку «)»
    5. чтобы «оживить» формулу, то есть заставить ее работать после прописывания всех необходимых параметров, не достаточно нажать кнопку Enter, необходимо последовательно зажать три клавиши: Ctrl, Shift, Enter

    Как видим на скриншоте выше, выделенные нами под формулу ячейки заполнились расчетными значениями коэффициентов регрессии для линейного тренда, в ячейке B38 находится коэффициент a 0 , а в ячейке A38 - коэффициент зависимости от параметра t (или x ), то есть a 1 . Подставляем полученные значения в уравнение линейной функции и получаем готовую модель в математическом выражении – y = 169 572,2+138 454,3*t

    Чтобы получить расчетные значения Y по модели и, соответственно, чтобы получить прогноз, нужно просто подставить формулу в ячейку экселя, а вместо t указать ссылку на ячейку с требуемым номером периода (смотрите на скриншоте ячейку D25 ).

    Для сравнения полученной модели с реальными данными, можно построить два графика, где в качестве Х указать порядковый номер периода, а в качестве Y в одном случае – реальный ВВП, а, в другом – расчетный (на скриншоте диаграмма справа).

    Построение линейного тренда с помощью инструмента Регрессия в Пакете анализа

    В статье , по сути, полностью описан этот метод, единственная же разница в том, что в наших исходных данных только один влияющий фактор Х (номер периода – t ).

    Как видно на рисунке выше, диапазон данных с известными значениями ВВП выделен как входной интервал Y , а соответствующий ему диапазон с номерами периодов t – как входной интервал Х . Итоги расчетов Пакетом анализа выносятся на отдельный лист и выглядит как набор таблиц (см. рисунок ниже) на котором нас интересуют ячейки, которые были закрашены мною в желтый и зеленый цвета. По аналогии с порядком, расписанным в указанной выше статье, из полученных коэффициентов собирается модель линейного тренда y=169 572,2+138 454,3*t , на основе которой и делаются прогнозы.

    Прогнозирование с помощью линейного тренда через функцию ТЕНДЕНЦИЯ

    Этот метод отличается от предыдущих тем, что он пропускает необходимые ранее этапы расчета параметров модели и подстановки полученных коэффициентов вручную в качестве формулы в ячейку, чтобы получить прогноз, эта функция как раз и выдает уже готовое рассчитанное прогнозное значение на основе известных исходных данных.

    В целевую ячейку (ту ячейку, где хотим видеть результат) ставим знак равно и вызываем волшебную функцию, прописав «ТЕНДЕНЦИЯ(», далее необходимо выделить , то есть , после ставим точку с запятой и выделяем диапазон с известными значениями Х, то есть с номерами периодов t , которые соответствуют столбцу с известными значениями ВВП, опять ставим точку с запятой и выделяем ячейку с номером периода, для которого мы делаем прогноз (правда, в нашем случае, номер периода можно указать не ссылкой на ячейку, а просто цифрой прямо в формуле), далее ставим еще одну точку с запятой и указываем ИСТИНА или 1 , в качестве подтверждения для расчета коэффициента a 0 , наконец, ставим закрывающую скобочку и нажимаем клавишу Enter .

    Минус данного метода в том, что он не показывает ни уравнения модели, ни его коэффициентов, из-за чего нельзя сказать, что на основе такой-то модели мы получили такой-то прогноз, также как и нет какого-либо отражения параметров качества модели, того таки коэффициента детерминации, по которому можно было бы сказать имеет ли смысл брать во внимание полученный прогноз или нет.

    Прогнозирование с помощью линейного тренда через функцию ПРЕДСКАЗ

    Суть данной функции целиком и полностью идентична предыдущей, разница лишь в порядке прописывания исходных данных в формуле и в том, что нет настройки для наличия или отсутствия коэффициента a 0 (то есть функция подразумевает, что этот коэффициент, в любом случае, есть)

    Как видно с рисунка выше, в целевую ячейку прописываем «=ПРЕДСКАЗ(» и затем указываем ячейку с номером периода , для которого необходимо просчитать значение по линейному тренду, то есть прогноз, после ставим точку с запятой, далее выделяем диапазон известных значений Y , то есть столбец с известными значениями ВВП , после ставим точку с запятой и выделяем диапазон с известными значениями Х , то есть с номерами периодов t , которые соответствуют столбцу с известными значениями ВВП и, наконец, ставим закрывающую скобочку и жмем клавишу Enter .

    Полученные результаты, как и в методе выше, это лишь готовый результат расчета прогнозного значения по линейной трендовой модели, он не выдает ни погрешностей, ни самой модели в математическом выражении.

    Подводя итог к статье

    Можно сказать, что каждый из методов может быть наиболее приемлемым среди прочих в зависимости от текущей цели, которую мы ставим перед собой. Первые три метода пересекаются между собой как по смыслу, так и по результату, и годятся для любой более или менее серьезной работы, где необходимо описание модели и ее качества. В свою очередь, последние два метода также идентичны между собой и максимально быстро вам дадут ответ, например, на вопрос: «Какой прогноз продаж на следующий год?».

    Кривые роста, описывающие закономерности развития явлений во времени – это результат аналитического выравнивания динамических рядов. Выравнивание ряда с помощью тех или иных функций в большинстве случаев оказывается удобным средством описания эмпирических данных. Это средство при соблюдении ряда условий можно применить и для прогнозирования. Процесс выравнивания состоит из следующих основных этапов:

    Выбора типа кривой, форма которой соответствует характеру изменения динамического ряда;

    Определения численных значений (оценка) параметров кривой;

    Апостериорного контроля качества выбранного тренда.

    В современных ППП все перечисленные этапы реализуются одновременно, как правило, в рамках одной процедуры.

    Аналитическое сглаживание с использованием той или иной функции позволяет получить выровненные, или, как их иногда не вполне правомерно называют, теоретические значения уровней динамического ряда, т. е. уровни, которые наблюдались бы, если бы динамика явления полностью совпадала с кривой. Эта же функция с некоторой корректировкой или без нее, применяется в качестве модели для экстраполяции (прогноза).

    Вопрос о выборе типа кривой является основным при выравнивании ряда. При всех прочих равных условиях ошибка в решении этого вопроса оказывается более значимой по своим последствиям (особенно для прогнозирования), чем ошибка, связанная со статистическим оцениванием параметров.

    Поскольку форма тренда объективно существует, то при выявлении ее следует исходить из материальной природы изучаемого явления, исследуя внутренние причины его развития, а также внешние условия и факторы на него влияющие. Только после глубокого содержательного анализа можно переходить к использованию специальных приемов, разработанных статистикой.

    Весьма распространенным приемом выявления формы тренда является графическое изображение временного ряда. Но при этом велико влияние субъективного фактора, даже при отображении выровненных уровней.

    Наиболее надежные методы выбора уравнения тренда основаны на свойствах различных кривых, применяемых при аналитическом выравнивании. Такой подход позволяет увязать тип тренда с теми или иными качественными свойствами развития явления. Нам представляется, что в большинстве случаев практически приемлемым является метод, который основывается на сравнении характеристик изменения приростов исследуемого динамического ряда с соответствующими характеристиками кривых роста. Для выравнивания выбирается та кривая, закон изменения прироста которой наиболее близок к закономерности изменения фактических данных.

    При выборе формы кривой надо иметь в виду еще одно обстоятельство. Рост сложности кривой в целом ряде случаев может действительно увеличить точность описания тренда в прошлом, однако в связи с тем, что более сложные кривые содержат большее число параметров и более высокие степени независимой переменной, их доверительные интервалы будут, в общем, существенно шире, чем у более простых кривых при одном и том же периоде упреждения.

    В настоящее время, когда использование специальных программ без особых усилий позволяет одновременно строить несколько видов уравнений, широко эксплуатируются формальные статистические критерии для определения лучшего уравнения тренда.

    Из сказанного выше, по-видимому, можно сделать вывод о том, что выбор формы кривой для выравнивания представляет собой задачу, которая не решается однозначно, а сводится к получению ряда альтернатив. Окончательный выбор не может лежать в области формального анализа, тем более, если предполагается с помощью выравнивания не только статистически описать закономерность поведения уровня в прошлом, но и экстраполировать найденную закономерность в будущее. Вместе с тем различные статистические приемы обработки данных наблюдения могут принести существенную пользу, по крайней мере, с их помощью можно отвергнуть заведомо непригодные варианты и тем самым существенно ограничить поле выбора.

    Рассмотрим наиболее используемые типы уравнений тренда:

    1. Линейная форма тренда:

    где – уровень ряда, полученный в результате выравнивания по прямой; – начальный уровень тренда; – средний абсолютный прирост, константа тренда.

    Для линейной формы тренда характерно равенство так называемых первых разностей (абсолютных приростов) и нулевые вторые разности, т. е. ускорения.

    2. Параболическая (полином 2-ой степени) форма тренда:

    (3.6)

    Для данного типа кривой постоянными являются вторые разности (ускорение), а нулевыми – третьи разности.

    Параболическая форма тренда соответствует ускоренному или замедленному изменению уровней ряда с постоянным ускорением. Если < 0 и > 0, то квадратическая парабола имеет максимум, если > 0 и < 0 – минимум. Для отыскания экстремума первую производную параболы по t приравнивают 0 и решают уравнение относительно t .

    3. Логарифмическая форма тренда:

    , (3.7)

    где – константа тренда.

    Логарифмическим трендом может быть описана тенденция, проявляющаяся в замедлении роста уровней ряда динамики при отсутствии предельно возможного значения. При достаточно большом t логарифмическая кривая становится мало отличимой от прямой линии.

    4. Мультипликативная (степенная) форма тренда:

    (3.8)

    5. Полином 3-ей степени:

    Естественно, кривых, описывающих основные тенденции, гораздо больше. Однако формат учебного пособия не позволяет описать все их многообразие. Показанные далее приемы построения моделей позволят пользователю самостоятельно использовать другие функции, в частности обратные.

    Для решения поставленной задачи по аналитическому сглаживанию динамических рядов в системе STATISTICA нам потребуется создать дополнительную переменную на листе с исходными данными переменной «ВГ2001-2010», который следует сделать активным.

    Нам предстоит построить уравнение тренда, которое по существу является уравнением регрессии, в котором в качестве фактора выступает «время». Создаем переменную «Т», содержащую интервалы времени, 10 годам (с 2001 по 2010). Переменная «Т» будет состоять из натуральных чисел от 1 до 10, соответствующих указанным годам.

    В итоге получается следующий рабочий лист (рис. 3.6)

    Рис. 3.6. Рабочий лист с созданной переменной времени

    Далее рассмотрим процедуру, позволяющую строить регрессионные модели как линейного, так и нелинейного типа. Для этого выбираем: Statistics/Advanced Linear/Nonlinear Models/Nonlinear Estimation (рис. 3.7). В появившемся окне (рис. 3.8) выбираем функцию User-specified Regression, Least Squares (построение моделей регрессии пользователем вручную, параметры уравнения находятся по методу наименьших квадратов (МНК)).

    В следующем диалоговом окне (рис. 3.9) нажимаем на кнопку Function to be estimated , чтобы попасть на экран для задания модели вручную (рис. 3.10).

    Рис. 3.7. Запуск процедуры Statistics/Advanced Linear/

    Nonlinear Models/Nonlinear Estimation

    Рис. 3.8. Окно процедуры Nonlinear Estimation

    Рис. 3.9ю Окно процедуры User-Specified Regression, Least Squares

    Рис. 3.10. Окно для реализации процедуры

    задания уравнения тренда вручную

    В верхней части экрана находится поле для ввода функции, в нижней части располагаются примеры ввода функций для различных ситуаций.

    Прежде чем сформировать интересующие нас модели, необходимо пояснить некоторые условные обозначения. Переменные уравнений задаются в формате «v №», где «v » обозначает переменную (от англ. «variable »), а «№» – номер столбца, в котором она расположена в таблице на рабочем листе с исходными данными. Если переменных очень много, то справа находится кнопка Review vars , позволяющая выбирать их из списка по названиям и просматривать их параметры с помощью кнопки Zoom (рис. 3.11).

    Рис. 3.11. Окно выбора переменной с помощью кнопки Review vars

    Параметры уравнений обозначаются любыми латинскими буквами, не обозначающими какое-либо математическое действие. Для упрощения работы предлагается обозначать параметры уравнения так, как в описании уравнений тренда – латинской буквой «а », последовательно присваивая им порядковые номера. Знаки математических действий (вычитания, сложения, умножения и пр.) задаются в обычном для Windows -приложений формате. Пробелы между элементами уравнения не требуются.

    Итак, рассмотрим первую модель тренда – линейную, .

    Следовательно, после набора она будет выглядеть следующим образом:

    ,

    где v 1 – это столбец на листе с исходными данными, в котором находятся значения исходного динамического ряда; а 0 и а 1 – параметры уравнения; v 2 – столбец на листе с исходными данными, в котором находятся значения интервалов времени (переменная Т) (рис. 3.12).

    После этого дважды нажимаем кнопку ОК .

    Рис. 3.12. Окно процедуры задания уравнения линейного тренда

    Рис. 3.13. Закладка Quick процедуры оценки уравнения тренда.

    В появившемся окне (рис. 3.13) можно выбрать метод оценки параметров уравнения регрессии (Estimation method ), если это необходимо. В нашем случае нужно перейти к закладке Advanced и нажать на кнопку Start values (рис. 3.14). В этом диалоге задаются стартовые значения параметров уравнения для их нахождения по МНК, т.е. их минимальные значения. Изначально они заданы как 0,1 для всех параметров. В нашем случае можно оставить эти значения в том же виде, но если значения в наших исходных данных меньше единицы, то необходимо задать их в виде 0,001 для всех параметров уравнения тренда (рис. 3.15). Далее нажимаем кнопку ОК .

    Рис. 3.14. Закладка Advanced процедуры оценки уравнения тренда

    Рис. 3.15. Окно задания стартовыхзначений параметров уравнения тренда

    Рис. 3.16. Закладка Quick окна результатов регрессионного анализа

    На закладке Quick (рис.3.16) очень важным является значение строчки Proportion of variance accounted for , которое соответствует коэффициенту детерминации; это значение лучше записать отдельно, так как в дальнейшем оно выводиться не будет, и пользователю придется рассчитывать коэффициент вручную, при этом достаточно трех знаков после запятой. Далее нажимаем кнопку Summary: Parameter estimates для получения данных о параметрах линейного уравнения тренда (рис. 3.17).

    Рис. 3.17. Результаты расчета параметров линейной модели тренда

    Столбец Estimate числовые значения параметров уравнения; Standard еrror – стандартная ошибка параметра; t-value расчетное значение t -критерия; df – число степеней свободы (n -2); p-level – расчетный уровень значимости; Lo. Conf. Limit и Up. Conf. Limit – соответственно нижняя и верхняя граница доверительных интервалов для параметров уравнения с установленной вероятностью (указана как Level of Confidence в верхнем поле таблицы).

    Соответственно уравнение линейно модели тренда имеет вид .

    После этого возвращаемся к анализу и нажимаем на кнопку Analysis of Variance (дисперсионный анализ) на той же закладке Quick (см. рис. 3.16).

    Рис. 3.18. Результаты дисперсионного анализа линейной модели тренда

    В верхней заголовочной строке таблицы выдаются пять оценок:

    Sum of Squares – сумма квадратов отклонений; df – число степеней свободы; Mean Squares – средний квадрат; F-value – критерий Фишера; p-value – расчетный уровень значимости F -критерия.

    В левом столбце указывается источник вариации:

    Regression – вариация, объясненная уравнением тренда; Residual – вариация остатков – отклонений фактических значений от выровненных (полученных по уравнению тренда); Total – общая вариация переменной.

    На пересечении столбцов и строк получаем однозначно определенные показатели, расчетные формулы для которых представлены в табл. 3.2,

    Таблица 3.2

    Расчет показателей вариации трендовых моделей

    Source df Sum of Squares Mean squares F-value
    Regression m
    Residual n-m
    Total n
    Corrected Total n-1
    Regresion vs. Corrected Total m SSR MSR

    где – выровненные значения уровней динамического ряда; – фактические значения уровней динамического ряда; – среднее значение уровней динамического ряда.

    SSR (Regression Sum of Squares) – сумма квадратов прогнозных значений; SSE (Residual Sum of Squares) – сумма квадратов отклонений теоретических и фактических значений (для расчета остаточной, необъясненной дисперсии); SST (TotalSum of Squares) – сумма первой и второй строчки (сумма квадратов фактических значений); SSCT (Corrected TotalSum of Squares) – сумма квадратов отклонений фактических значений от средней величины (для расчета общей дисперсии); Regression vs. Corrected Total Sum of Squares – повторение первой строчки; MSR (Regression Mean Squares) – объясненная дисперсия; MSE (Residual Mean Squares) – остаточная, необъясненная дисперсия; MSCT (Mean Squares Corrected Total) – скорректированная общая дисперсия; Regression vs. Corrected Total Mean Squares – повторение первой строчки; Regression F-value – расчетное значение F -критерия; Regression vs. Corrected Total F-value – скорректированное расчетное значение F -критерия; n – число уровней ряда; m – число параметров уравнения тренда.

    Далее опять же на закладке Quick (см. рис. 3.16) нажимаем кнопку Predicted values, Residuals, etc . После ее нажатия система строит таблицу, состоящую из трех столбцов (рис. 3.19).

    Observed – наблюдаемые значения (то есть уровни исходного динамического ряда);