Arduino подключение часов реального времени ds3231. Синхронизируем время на модуле DS3231 с компьютером

Сегодня мы продолжим поиски идеальной микросхемы часов реального времени (RTC). Часы будем изготавливать на основе . Индикация будет использоваться более удобная для разработки - LCD дисплей, на котором будет отображаться вся информация сразу кроме настроек. В таком виде часы удобно использовать как настольный вариант.

Итак, рассмотрим саму микросхему DS3231. DS3231 - это часы реального времени с экстремально точным ходом (подобрали же производители словечко) благодаря встроенному кварцевому резонатору с температурной компенсацией. Интерфейс передачи данных - I 2 C. В этой микросхеме есть также вход для напряжения резервной батареи, при отключении основного питания микросхема автоматически переключается на работу от резервной батареи, точность хода от резервной батареи не нарушается. Весьма радует, не правда ли? В DS3231 поддерживается подсчет секунд, минут, часов, дней месяца (даты), дней недели, месяцев и лет (с учетом високосного года для месяцев). Поддерживается работа в 12 и 24 часовом формате. Имеется 2 будильника с возможностью их настройки и отслеживания состояния. Подстройка точности температурной компенсации. А также два выхода - на 32 кГц (выход составляет 32.768 кГц) и программируемый выход от 1 Гц до 8.192 кГц. Имеется также вывод сброса - RST. микросхема часов реального времени выпускается в корпусе SO-16. Корпус достаточно крупный, но если учитывать что внутри уже имеется кварц, да еще и температурно компенсируемый, то мне кажется, с размерами тут все отлично. У DS3231 есть близнец в виде DS3232, у которого, правда, на 2 ножки больше. Все это очень напоминает продукцию компании NXP - микросхемы часов PCA2129 и PCF2129. Аналогично температурно компенсируемый встроенных кварцевый резонатор, оба такие же близнецы только с разным количеством n.c. выводов и схожими функциями относительно DS3231 помимо хронометрожа времени.

RTC DS3231 имеются в продаже в виде модулей с необходимой обвязкой, а также до комплекта микросхемой EEPROM, которая чаще всего и даром не нужно, только веса добавляет:

Кроме необходимых деталей на плате модуля есть также светодиод, функция которого - индикация подключения питания к выводам. Наверно просто так доставили, для красоты.

Что важно знать при работе с такой микросхемой часов реального времени, так это как же извлечь из нее данные или записать их туда. Часы имеют интерфейс I 2 C. Для того чтобы осуществить запись данных (а это нужно и для того чтобы прочитать данные) нужно передать условие старта (эти команды осуществляются по средствам аппаратного или программного I 2 C для микроконтроллера), далее передать адрес микросхемы с битом записи, далее передать адрес регистра к которому будем обращаться и далее передать в этот регистр байт данных, если следом передать еще байт данных, он запишется в следующий регистр и так далее. По окончании нужно передать условие остановки. Графическое изображение выше сказанного на рисунке:

Запись данных необходима для первоначальной настройки, а также для настройки текущего времени. Далее нам нужно постоянно получать данные о текущем времени и даты. Для этого необходимо осуществлять чтение из регистров хранения этой информации. Чтение состоит из двух процедур - установить указатель на нужный регистр и прочитать его. Чтобы установить указатель на нужный регистр, нужно передать условие старта, потом передать адрес микросхемы с битом записи и байт с адресом регистра. Далее либо условие остановки и следом условие старта, либо просто рестарт. Теперь вторая процедура - непосредственно чтение из регистров. Старт передан, далее нужно отправить адрес микросхемы с битом чтения и далее считывать регистры в необходимом количестве, по окончании передать условие остановки. Если информация из регистра была прочитана, то указатель автоматически переходит на следующий за ним регистр без лишних действий со стороны микроконтроллера (мастер устройства). На рисунке проиллюстрировано все выше сказанное относительно чтения регистров по средствам I 2 C интерфейса:

Адрес микросхемы:

  • для записи - 0b11010000
  • для чтения - 0b11010001

Программно код на языке Си будет выглядеть следующим образом:

// функции с часами ======================================================================================================= // инициализация начальных установок void RTC_init(void){ i2c_start_cond(); // запуск i2c i2c_send_byte(RTC_adr_write); // передача адреса устройства, режим записи i2c_send_byte(0x0E); // передача адреса памяти i2c_send_byte(0b00100000); // запустить преобразование температуры и выход на 1 Гц i2c_send_byte(0b00001000); // разрешить выход 32 кГц i2c_stop_cond(); // остановка i2c } // получение времени и даты void RTC_read_time(void){ i2c_start_cond(); // запуск i2c i2c_send_byte(RTC_adr_write); // передача адреса устройства, режим записи i2c_send_byte(0x00); // передача адреса памяти i2c_stop_cond(); // остановка i2c i2c_start_cond(); // запуск i2c i2c_send_byte(RTC_adr_read); // передача адреса устройства, режим чтения sec = bcd(i2c_get_byte(0)); // чтение секунд, ACK min = bcd(i2c_get_byte(0)); // чтение минут, ACK hour = bcd(i2c_get_byte(0)); // чтение часов, ACK wday = bcd(i2c_get_byte(0)); // чтение день недели, ACK day = bcd(i2c_get_byte(0)); // чтение число, ACK month = bcd(i2c_get_byte(0)); // чтение месяц, ACK year = bcd(i2c_get_byte(1)); // чтение год, NACK i2c_stop_cond(); // остановка i2c } // установка времени void RTC_write_time(unsigned char hour1,unsigned char min1, unsigned char sec1){ i2c_start_cond(); // запуск i2c i2c_send_byte(RTC_adr_write); // передача адреса устройства, режим записи i2c_send_byte(0x00); // передача адреса памяти i2c_send_byte(bin(sec1)); // 0x00 секунды (целесообразно ли задавать еще и секунды?) i2c_send_byte(bin(min1)); // 0x01 минуты i2c_send_byte(bin(hour1)); // 0x02 часы i2c_stop_cond(); // остановка i2c } // установка даты void RTC_write_date(unsigned char wday, unsigned char day, unsigned char month, unsigned char year){ i2c_start_cond(); // запуск i2c i2c_send_byte(RTC_adr_write); // передача адреса устройства, режим записи i2c_send_byte(0x03); // передача адреса памяти i2c_send_byte(bin(wday)); // 0x03 день недели (воскресенье - 1, пн 2, вт 3, ср 4, чт 5, пт 6, сб 7) i2c_send_byte(bin(day)); // 0x04 день месяц i2c_send_byte(bin(month)); // 0x05 месяц i2c_send_byte(bin(year)); // 0x06 год i2c_stop_cond(); // остановка i2c } // чтение температуры void RTC_read_temper(void){ i2c_start_cond(); // запуск i2c i2c_send_byte(RTC_adr_write); // передача адреса устройства, режим записи i2c_send_byte(0x11); // передача адреса памяти i2c_stop_cond(); // остановка i2c i2c_start_cond(); // запуск i2c i2c_send_byte(RTC_adr_read); // передача адреса устройства, режим чтения t1 = i2c_get_byte(0); // чтение MSB температуры t2 = i2c_get_byte(1); // чтение LSB температуры i2c_stop_cond(); // остановка i2c t2=(t2/128); // сдвигаем на 6 - точность 0,25 (2 бита) // сдвигаем на 7 - точность 0,5 (1 бит) t2=t2*5; }

Это весь исходный код, использовавшийся для работы с микросхемой, подстройка хода часов не затрагивалась, так как и без того часы не ушли ни на секунду за несколько дней.

Да - отличной фишкой DS3231 является то, что эта же микросхема выполняет функции термометра (а то как же еще осуществлять температурную компенсацию) и возможность чтения текущей температуры. Максимальное разрешение температуры составляет 0.25 градусов Цельсия. Также период обновления температуры достаточно большой - около 1 минуты. Да нам быстро то не к чему обновлять ее.

Схема же всего устройства часов выглядит так:

Микроконтроллер был выбран Atmega8 за свою широкую распространенность и небольшую цену. Данный микроконтроллер можно использовать как в корпусе DIP-28, так и в SMD исполнении в корпусе TQFP-32. Резистор R3 необходим для предотвращения самопроизвольного перезапуска микроконтроллера в случае появления случайных помех на выводе PC6. Резистор R3 подтягивает плюс питания к этому выводу, надежно создавая потенциал на нем. Для индикации используется жидко кристаллический (ЖК или LCD) дисплей. Мною использовался дисплей 2004А - 4 строки по 20 символов больше для красоты, поэтому можно применять дисплей более привычный - 2 строки по 16 символов. ЖК дисплей подключается к микроконтроллеру по четырех битной системе. Переменный резистор R2 необходим для регулировки контраста символов на дисплее. Вращением движка этого резистора добиваемся наиболее четких для нас показаний на экране. Подсветка ЖК дисплея организована через вывод "А" и "К" на плате дисплея. Подсветка включается через резистор, ограничивающий ток - R1. Чем больше номинал, тем более тускло будет подсвечиваться дисплей. Однако пренебрегать этим резистором не стоит во избежание порчи подсветки. Кнопки S1 - S4 управляют настройками часов. Светодиод сигнализирует о том, что будильник сработал. Светодиод можно заменить на какую-либо звуковую схему. Резисторы R5 - R8 являются подтягивающими (pull-up) и необходимы для формирования прямоугольных импульсов на выводах микросхемы часов. Также это необходимо для правильной работы протокола I2C. Для питания схемы используется микросхема линейного стабилизатора L7805, ее можно заменить на отечественный аналог пяти вольтового линейного стабилизатора КР142ЕН5А, либо применить другу микросхему стабилизатора напряжения в соответствии с подключением ее в схеме (например LM317 или импульсные стабилизаторы LM2576, LM2596, MC34063 и так далее). Далее 5 вольт стабилизируются другой микросхемой - AMS1117 в исполнении, дающей на выходе 3,3 вольта. Микросхема часов, в соответствии с даташитом, питается от напряжения 3,3 вольта. Однако максимальное напряжение составляет 5,5 вольта. Поэтому Данный стабилизатор можно использовать, а можно и нет, на ваше усмотрение. Стабилизатор напряжения AMS1117 можно также заменить на исполнение ADJ (AMS1117ADJ) - то есть регулируемый вариант, задать необходимое напряжение при таком выборе необходимо будет при помощи двух резисторов, подключаемых к микросхеме в соответствии с даташитом на нее.

Схема была собрана и отлажена с применением отладочной макетной платы для микроконтроллера ATmega8:

Назначение кнопок:

  • S1 - отключает сигнал будильника, либо выходит в главное меню из любого меню настроек
  • S2 - сброс микроконтроллера
  • S3 - изменяет время или дату в меню настроек
  • S4 - вход в меню настроек и перелистывание меню

Вывод 32 кГц может использоваться для контроля частоты кварцевого резонатора. Подключаем к этому выводу частотомер или осциллограф и контролируем частоту:

Как видно из скриншота осциллограммы, частота примерно соответствует 32,768 кГц (примерно в силу ограничения разрешения измерения частоты, а "на глаз" настолько точно трудно определить).

В итоге получились часы со следующими характеристиками:

  • индикация времени
  • индикация даты
  • индикация дня недели
  • индикация активности будильника
  • 1 будильник с выходом сигнала от микроконтроллера
  • индикация температуры окружающей среды (программно реализована только положительная температура, отрицательная, думаю, нам ни к чему)
  • настройки будильника
  • настройки времени
  • настройки даты
  • LCD-дисплей с подсветкой
  • сохранение настроек и продолжение хода часов при отключении основного питания

Подытожим . Микросхема часов реального времени DS3231 является отличным решением. Точность хода сравнительно c какой-нибудь DS1307 или выше, а вот PCA/PCF2129 еще могут потягаться с ней. Среди рассмотренных мною микросхем часов реального времени данный экземпляр на сегодняшний день занимает первое место по функционалу и точности.

Для программирования микроконтроллера Atmega8 необходимо знать конфигурацию фьюз битов (скриншот сделан в программе ):

К статье прилагается прошивка для микроконтроллера Atmega8, проект схемы в программе , а также видео работы часов (в самом начале сработает будильник - загорится светодиод).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 МК AVR 8-бит

ATmega8

1 В блокнот
IC2 Часы реального времени (RTC)

DS3231

1 В блокнот
VR1 Линейный регулятор

L7805AB

1 В блокнот
VR2 Линейный регулятор

AMS1117-3.3

1 В блокнот
VD1 Выпрямительный диод

1N4148

1 В блокнот
C1 470 мкФ 1 В блокнот
C2, C3, C5, C7 Конденсатор 100 нФ 4 В блокнот
C4 Электролитический конденсатор 220 мкФ 1 В блокнот
C6, C8 Электролитический конденсатор 10 мкФ 2 В блокнот
R1 Резистор

22 Ом

1 В блокнот
R2 Подстроечный резистор 10 кОм 1 3296W-1-103LF

Во многих проектах Ардуино требуется отслеживать и фиксировать время наступления тех или иных событий. Модуль часов реального времени, оснащенный дополнительной батарей, позволяет хранить текущую дату, не завися от наличия питания на самом устройстве. В этой статье мы поговорим о наиболее часто встречающихся модулях RTC DS1307, DS1302, DS3231, которые можно использовать с платой Arduino.

Модуль часов представляет собой небольшую плату, содержащей, как правило, одну из микросхем DS1307, DS1302, DS3231.Кроме этого, на плате практически можно найти механизм установки батарейки питания. Такие платы часто применяется для учета времени, даты, дня недели и других хронометрических параметров. Модули работают от автономного питания – батареек, аккумуляторов, и продолжают проводить отсчет, даже если на Ардуино отключилось питание. Наиболее распространенными моделями часов являются DS1302, DS1307, DS3231. Они основаны на подключаемом к Arduino модуле RTC (часы реального времени).

Часы ведут отсчет в единицах, которые удобны обычному человеку – минуты, часы, дни недели и другие, в отличие от обычных счетчиков и тактовых генераторов, которые считывают «тики». В Ардуино имеется специальная функция millis(), которая также может считывать различные временные интервалы. Но основным недостатком этой функции является сбрасывание в ноль при включении таймера. С ее помощью можно считать только время, установить дату или день недели невозможно. Для решения этой проблемы и используются модули часов реального времени.

Электронная схема включает в себя микросхему, источник питания, кварцевый резонатор и резисторы. Кварцевый резонатор работает на частоте 32768 Гц, которая является удобной для обычного двоичного счетчика. В схеме DS3231 имеется встроенный кварц и термостабилизация, которые позволяют получить значения высокой точности.

Сравнение популярных модулей RTC DS1302, DS1307, DS3231

В этой таблице мы привели список наиболее популярных модулей и их основные характеристики.

Название Частота Точность Поддерживаемые протоколы
DS1307 1 Гц, 4.096 кГц, 8.192 кГц, 32.768 кГц Зависит от кварца – обычно значение достигает 2,5 секунды в сутки, добиться точности выше 1 секунды в сутки невозможно. Также точность зависит от температуры. I2C
DS1302 32.768 кГц 5 секунд в сутки I2C, SPI
DS3231 Два выхода – первый на 32.768 кГц, второй – программируемый от 1 Гц до 8.192 кГц ±2 ppm при температурах от 0С до 40С.

±3,5 ppm при температурах от -40С до 85С.

Точность измерения температуры – ±3С

I2C

Модуль DS1307

DS1307 – это модуль, который используется для отсчета времени. Он собран на основе микросхемы DS1307ZN, питание поступает от литиевой батарейки для реализации автономной работы в течение длительного промежутка времени. Батарея на плате крепится на обратной стороне. На модуле имеется микросхема AT24C32 – это энергонезависимая память EEPROM на 32 Кбайт. Обе микросхемы связаны между собой шиной I2C. DS1307 обладает низким энергопотреблением и содержит часы и календарь по 2100 год.

Модуль обладает следующими параметрами:

  • Питание – 5В;
  • Диапазон рабочих температур от -40С до 85С;
  • 56 байт памяти;
  • Литиевая батарейка LIR2032;
  • Реализует 12-ти и 24-х часовые режимы;
  • Поддержка интерфейса I2C.

Модуль оправдано использовать в случаях, когда данные считываются довольно редко, с интервалом в неделю и более. Это позволяет экономить на питании, так как при бесперебойном использовании придется больше тратить напряжения, даже при наличии батарейки. Наличие памяти позволяет регистрировать различные параметры (например, измерение температуры) и считывать полученную информацию из модуля.

Взаимодействие с другими устройствами и обмен с ними информацией производится с помощью интерфейса I2C с контактов SCL и SDA. В схеме установлены резисторы, которые позволяют обеспечивать необходимый уровень сигнала. Также на плате имеется специальное место для крепления датчика температуры DS18B20.Контакты распределены в 2 группы, шаг 2,54 мм. В первой группе контактов находятся следующие выводы:

  • DS – вывод для датчика DS18B20;
  • SCL – линия тактирования;
  • SDA – линия данных;
  • VCC – 5В;

Во второй группе контактов находятся:

  • SQ – 1 МГц;
  • BAT – вход для литиевой батареи.

Для подключения к плате Ардуино нужны сама плата (в данном случае рассматривается Arduino Uno), модуль часов реального времени RTC DS1307, провода и USB кабель.

Чтобы подключить контроллер к Ардуино, используются 4 пина – VCC, земля, SCL, SDA.. VCC с часов подключается к 5В на Ардуино, земля с часов – к земле с Ардуино, SDA – А4, SCL – А5.

Для начала работы с модулем часов нужно установить библиотеки DS1307RTC, TimeLib и Wire. Можно использовать для работы и RTCLib.

Проверка RTC модуля

При запуске первого кода программа будет считывать данные с модуля раз в секунду. Сначала можно посмотреть, как поведет себя программа, если достать из модуля батарейку и заменить на другую, пока плата Ардуино не присоединена к компьютеру. Нужно подождать несколько секунд и вытащить батарею, в итоге часы перезагрузятся. Затем нужно выбрать пример в меню Examples→RTClib→ds1307. Важно правильно поставить скорость передачи на 57600 bps.

При открытии окна серийного монитора должны появиться следующие строки:

Будет показывать время 0:0:0. Это связано с тем, что в часах пропадает питание, и отсчет времени прекратится. По этой причине нельзя вытаскивать батарею во время работы модуля.

Чтобы провести настройку времени на модуле, нужно в скетче найти строку

RTC.adjust(DateTime(__DATE__, __TIME__));

В этой строке будут находиться данные с компьютера, которые используются ля прошивки модуля часов реального времени. Для корректной работы нужно сначала проверить правильность даты и времени на компьютере, и только потом начинать прошивать модуль часов. После настройки в мониторе отобразятся следующие данные:

Настройка произведена корректно и дополнительно перенастраивать часы реального времени не придется.

Считывание времени. Как только модуль настроен, можно отправлять запросы на получение времени. Для этого используется функция now(), возвращающая объект DateTime, который содержит информацию о времени и дате. Существует ряд библиотек, которые используются для считывания времени. Например, RTC.year() и RTC.hour() – они отдельно получают информацию о годе и часе. При работе с ними может возникнуть проблема: например, запрос на вывод времени будет сделан в 1:19:59. Прежде чем показать время 1:20:00, часы выведут время 1:19:00, то есть, по сути, будет потеряна одна минута. Поэтому эти библиотеки целесообразно использовать в случаях, когда считывание происходит нечасто – раз в несколько дней. Существуют и другие функции для вызова времени, но если нужно уменьшить или избежать погрешностей, лучше использовать now() и из нее уже вытаскивать необходимые показания.

Пример проекта с i2C модулем часов и дисплеем

Проект представляет собой обычные часы, на индикатор будет выведено точное время, а двоеточие между цифрами будет мигать с интервалом раз в одну секунду. Для реализации проекта потребуются плата Arduino Uno, цифровой индикатор, часы реального времени (в данном случае вышеописанный модуль ds1307), шилд для подключения (в данном случае используется Troyka Shield), батарейка для часов и провода.

В проекте используется простой четырехразрядный индикатор на микросхеме TM1637. Устройство обладает двухпроводным интерфейсом и обеспечивает 8 уровней яркости монитора. Используется только для показа времени в формате часы:минуты. Индикатор прост в использовании и легко подключается. Его выгодно применять для проектов, когда не требуется поминутная или почасовая проверка данных. Для получения более полной информации о времени и дате используются жидкокристаллические мониторы.

Модуль часов подключается к контактам SCL/SDA, которые относятся к шине I2C. Также нужно подключить землю и питание. К Ардуино подключается так же, как описан выше: SDA – A4, SCL – A5, земля с модуля к земле с Ардуино, VCC -5V.

Индикатор подключается просто – выводы с него CLK и DIO подключаются к любым цифровым пинам на плате.

Скетч. Для написания кода используется функция setup, которая позволяет инициализировать часы и индикатор, записать время компиляции. Вывод времени на экран будет выполнен с помощью loop.

#include #include "TM1637.h" #include "DS1307.h" //нужно включить все необходимые библиотеки для работы с часами и дисплеем. char compileTime = __TIME__; //время компиляции. #define DISPLAY_CLK_PIN 10 #define DISPLAY_DIO_PIN 11 //номера с выходов Ардуино, к которым присоединяется экран; void setup() { display.set(); display.init(); //подключение и настройка экрана. clock.begin(); //включение часов. byte hour = getInt(compileTime, 0); byte minute = getInt(compileTime, 2); byte second = getInt(compileTime, 4); //получение времени. clock.fillByHMS(hour, minute, second); //подготовка для записывания в модуль времени. clock.setTime(); //происходит запись полученной информации во внутреннюю память, начало считывания времени. } void loop() { int8_t timeDisp; //отображение на каждом из четырех разрядов. clock.getTime();//запрос на получение времени. timeDisp = clock.hour / 10; timeDisp = clock.hour % 10; timeDisp = clock.minute / 10; timeDisp = clock.minute % 10; //различные операции для получения десятков, единиц часов, минут и так далее. display.display(timeDisp); //вывод времени на индикатор display.point(clock.second % 2 ? POINT_ON: POINT_OFF);//включение и выключение двоеточия через секунду. } char getInt(const char* string, int startIndex) { return int(string - "0") * 10 + int(string) - "0"; //действия для корректной записи времени в двухзначное целое число. В ином случае на экране будет отображена просто пара символов. }

После этого скетч нужно загрузить и на мониторе будет показано время.

Программу можно немного модернизировать. При отключении питания выше написанный скетч приведет к тому, что после включения на дисплее будет указано время, которое было установлено при компиляции. В функции setup каждый раз будет рассчитываться время, которое прошло с 00:00:00 до начала компиляции. Этот хэш будет сравниваться с тем, что хранятся в EEPROM, которые сохраняются при отключении питания.

Для записи и чтения времени в энергонезависимую память или из нее нужно добавить функции EEPROMWriteInt и EEPROMReadInt. Они нужны для проверки совпадения/несовпадения хэша с хэшем, записанным в EEPROM.

Можно усовершенствовать проект. Если использовать жидкокристаллический монитор, можно сделать проект, который будет отображать дату и время на экране. Подключение всех элементов показано на рисунке.

В результате в коде нужно будет указать новую библиотеку (для жидкокристаллических экранов это LiquidCrystal), и добавить в функцию loop() строки для получения даты.

Алгоритм работы следующий:

  • Подключение всех компонентов;
  • Проверка – на экране монитора должны меняться ежесекундно время и дата. Если на экране указано неправильное время, нужно добавить в скетч функцию RTC.write (tmElements_t tm). Проблемы с неправильно указанным временем связаны с тем, что модуль часов сбрасывает дату и время на 00:00:00 01/01/2000 при выключении.
  • Функция write позволяет получить дату и время с компьютера, после чего на экране будут указаны верные параметры.

Заключение

Модули часов используются во многих проектах. Они нужны для систем регистрации данных, при создании таймеров и управляющих устройств, которые работают по заданному расписанию, в бытовых приборах. С помощью широко распространенных и дешевых модулей вы можете создать такие проекты как будильник или регистратор данных с сенсоров, записывая информацию на SD-карту или показывая время на экране дисплея. В этой статье мы рассмотрели типичные сценарии использования и варианты подключения наиболее популярных видов модулей.

«. Знакомимся с модулем часов реального времени DS3231. В статье видео-инструкция, листинги программ, назначение и способы подключения к Arduino модулей из семейства DS.

Модуль часов реального времени DS3231

Что такое модуль часов реального времени DS3231?

Модуль часов реального времени - это электронная схема, предназначенная для учета хронометрических данных (текущее время, дата, день недели и др.), представляет собой систему из автономного источника питания и учитывающего устройства.

Модуль DS3231 по сути представляет из себя обыкновенные часы. В платах Arduino уже есть встроенный датчик времени Millis , однако он работает только при поданном питании на плату. При отключении и дальнейшем включении Arduino отсчет времени Millis сбросится до нуля. А DS3231 имеет на борту батарейку, которая даже при отключенной плате Arduino продолжает «питать» модуль, позволяя ему измерять время.

Модуль можно использовать в качестве часов или будильника, построенных на базе плат Arduino. Или же в качестве оповещения для различных систем, к примеру в «Умном доме».

Технические характеристики DS3231:

  • модуль производит подсчет часов, минут, секунд, дат, месяцев, лет (високосные года учитываются до 2100 года);
  • для подключения к различным устройствам, часы подключаются по I2C интерфейсу.

32К — Выход, предназначенный для подачи внешнего питания >12В.

SQW — Программируемый выход Square-Wave сигнала.

SCL – Через этот пин по интерфейсу I2C происходит обмен данными с часами.

SDA – Через этот пин передаются данные с часов.

VCC – Питание часов реального времени, нужно 5 вольт. Если на этот пин не поступает напряжение, часы переходят в спящий режим.

GND — Земля.

Схема подключения часов реального времени DS3231 и простейшая программа

Пины SDA и SCL на разных платах Arduino:

SDA SCL
UNO A4 A5
Mini A4 A5
Nano A4 A5
Mega2560 20 21
Leonardo 2 3

Подключим модуль часов реального времени к Arduino UNO. SDA — пин A4, SCL — пин A5.

Для работы модели подойдет следующая программа (программу вы можете просто скопировать в Arduino IDE):

#include

void setup() {
delay(300);
Serial.begin(9600);
time.begin();
}
void loop(){



}
}

В данном скетче просто идет отсчет времени.

В первую очередь в сктече подключение библиотеки iarduino_RTC.h.

Там же укажите точное название своего модуля для корректной работы с ним.

В итоге получаем вывод времени с модуля DS3231 в монитор порта. Идет вывод часов, минут, секунд.

В следующем скетче добавим функцию settime , позволяющую установить начальное время отсчета.

#include
iarduino_RTC time(RTC_DS3231);
void setup() {
delay(300);
Serial.begin(9600);
time.begin();
time.settime(0,0,18,24,04,17,1); // 0 сек, 0 мин, 18 час, 24, апреля, 2017 года, понедельник
}
void loop(){
if(millis()%1000==0){ // если прошла 1 секунда
Serial.println(time.gettime("d-m-Y, H:i:s, D")); // выводим время
delay(1); // приостанавливаем на 1 мс, чтоб не выводить время несколько раз за 1мс
}
}

В примере время начинает отсчитываться с 0 сек, 0 мин, 18 час, 24, апреля, 2017 года, понедельник.

Посты по урокам:

  1. Первый урок: .
  2. Второй урок: .
  3. Третий урок: .
  4. Четвертый урок: .
  5. Пятый урок: .
  6. Шестой урок: .
  7. Седьмой урок: .
  8. Восьмой урок: .
  9. Девятый урок:

Модуль DS3231 (RTC, ZS-042) — представляет собой недорогую плату с чрезвычайно точными часами реального времени (RTC), с температурной компенсацией кварцевого генератора и кристалла. Модуль включает в себя литиевую батарею, которая поддерживает бесперебойную работу, даже при отключении источник питания. Интегрированный генератор улучшить точность устройства и позволил уменьшить количество компонентов.

Технические параметры

Напряжение питания: 3.3В и 5В
Чип памяти: AT24C32 (32 Кб)
Точность: ± 0.432 сек в день
Частота кварца:32.768 кГц
Поддерживаемый протокол: I2C
Габариты: 38мм x 22мм x 15мм

Общие сведения

Большинство микросхем, таких как DS1307 используют внешний кварцевый генератор частотой 32кГц, но в них есть существенный недостаток, при изменении температуры меняется частота кварца, что приводит к погрешности в подсчете времени. Эта проблема устранена в чипе DS3231, внутрь которого установили кварцевый генератор и датчик температуры, который компенсирует изменения температуры, так что время остается точным (при необходимости, данные температуры можно считать). Так же чип DS3231 поддерживает секунды, минуты, часы, день недели, дата, месяц и год информацию, а так же следит за количеством дней в месяце и делает поправку на високосный год. Поддерживает работу часов в двух форматов 24 и 12, а так-же возможно запрограммировать два будильника. Модуль работает по двух проводной шине I2C.


Теперь немного о самом модуле, построен он на микросхеме DS3231N. Резисторная сборка RP1 (4.7 кОм), необходима для подтяжки линий 32K, SQW, SCL и SDA (кстати, если используется несколько модулей с шиной I2C, необходимо выпаять подтягивающие резисторы на других модулях). Вторая сборка резисторов, необходима для подтяжки линий A0, A1 и A2, необходимы они для смены адресации микросхемы памяти AT24C32N. Резистор R5 и диод D1, служат для подзарядки батарее, в принципе их можно выпаять, так как обычной батарейки SR2032 хватает на годы. Так же установлена микросхема памяти AT24C32N, это как бы бонус, для работы часов RTC DS3231N в ней нет необходимости. Резистор R1 и светодиод Power, сигнализируют о включении модуля. Как и говорилось, модуль работает по шине I2C, для удобства эти шины были выведены на два разъема J1 и J2, назначение остальных контактов, можно посмотреть ниже.Назначение J1
32K: выход, частота 32 кГц
SQW: выход
SDA: линия данных (Serial Dфta)
VCC: «+» питание модуля
GND: «-» питание модуля Назначение J2
SCL: линия тактирования (Serial CLock)
SDA: линия данных (Serial Data)
VCC: «+» питание модуля
GND: «-» питание модуля


Немного расскажу, о микросхеме AT24C32N, это микросхема с 32к памятью (EEPROM) от производителя Atmel, собранная в корпусе SOIC8, работающая по двухпроводной шине I2C. Адрес микросхемы 0x57, при необходимости легко меняется, с помощью перемычек A0, A1 и A2 (это позволяет увеличить количество подключенных микросхем AT24C32/64). Так как чип AT24C32N имеет, три адресных входа (A0, A1 и A2), которые могут находится в двух состояния, либо лог «1» или лог «0», микросхеме доступны восемь адресов. от 0x50 до 0x57.

Подключение DS3231 к Arduino

Необходимые детали:
Arduino UNO R3 x 1 шт.
Часы реального времени на DS3231, RTC, SPI, AT24C32 x 1 шт.
Провод DuPont, 2,54 мм, 20 см, F-M (Female — Male) x 1 шт.
Кабель USB 2.0 A-B x 1 шт.

Подключение:
В данном примере буду использовать только модуль DS3231 и Arduino UNO R3, все данные будут передаваться в «Мониторинг порта». Схема не сложная, необходимо всего четыре провода, сначала подключаем шину I2C, SCL в A4 (Arduino UNO) и SDA в A5 (Arduino UNO), осталось подключить питание GND к GND и VCC к 5V (можно записать и от 3.3В), схема собрана, теперь надо подготовить программную часть.

Библиотеки работающий с DS3231 нет в среде разработке IDE Arduino, необходимо скачать «DS3231 » и добавить в среду разработки Arduino.

Установка времени DS3231
При первом включении необходимо запрограммировать время, откройте пример из библиотеки DS3231 «Файл» -> «Примеры» -> «DS3231» -> «Arduino» -> «DS3231_Serial_Easy», или скопируйте код снизу

/* Тестирование производилось на Arduino IDE 1.8.0 Дата тестирования 31.08.2018г. */ #include // Подключаем библиотеку Wire DS3231 rtc(SDA, SCL); // Инициализация DS3231 void setup() { Serial.begin(115200); // Установка последовательного соединения rtc.begin(); // Инициализировать rtc // Установка времени rtc.setDOW(FRIDAY); // Установить день-недели rtc.setTime(16, 29, 0); // Установить время 16:29:00 (формат 24 часа) rtc.setDate(31, 8, 2018); // Установить дату 31 августа 2018 года } void loop() { Serial.print(rtc.getDOWStr()); // Отправляем день-неделя Serial.print(" "); Serial.print(rtc.getDateStr()); // Отправляем дату Serial.print(" -- "); Serial.println(rtc.getTimeStr()); // Отправляем время delay (1000); // Задержка в одну секунду }

Тестирование производилось на Arduino IDE 1.8.0

Дата тестирования 31.08.2018г.

#include // Подключаем библиотеку Wire

DS3231 rtc (SDA , SCL ) ; // Инициализация DS3231

void setup ()

Serial . begin (115200 ) ; // Установка последовательного соединения

rtc . begin () ; // Инициализировать rtc

// Установка времени

rtc . setDOW (FRIDAY ) ; // Установить день-недели

rtc . setTime (16 , 29 , 0 ) ; // Установить время 16:29:00 (формат 24 часа)

void loop ()

Serial . print (rtc . getDOWStr () ) ; // Отправляем день-неделя

Serial . print (" " ) ;

Serial . print (rtc . getDateStr () ) ; // Отправляем дату

Serial . print (" -- " ) ;

Serial . println (rtc . getTimeStr () ) ; // Отправляем время

delay (1000 ) ; // Задержка в одну секунду

Загружаем скетч в контроллер Arduino и открываем «Мониторинг порта»

Отличительные особенности:

  • Точность ±2 ppm в диапазоне температур от 0°C до +40°C
  • Точность ±3.5 ppm в диапазоне температур от-40°C до +85°C
  • Вход для подключения автономного источника питания, позволяющего обеспечить непрерывную работу
  • Рабочий температурный диапазон коммерческий: от 0°C до +70°C индустриальный: -от 40°C до +85°C
  • Низкое потребление
  • Часы реального времени, отсчитывающие секунды, минуты, часы, дни недели, дни месяца, месяц и год с коррекцией високосного года вплоть до 2100
  • Два ежедневных будильника
  • Выход прямоугольного сигнала с программируемой частотой
  • Быстродействующие (400 кГц) I 2 C интерфейс
  • 3.3 В питание
  • Цифровой температурный датчик с точностью измерения ±3°C
  • Регистр, содержащий данные о необходимой подстройке
  • Вход/выход сброса nonRST

Применение:

  • Серверы
  • Электронные электросчетчики
  • Телематическая аппаратура
  • GPS системы

Типовая схема включения DS3231:

Общее описание:

DS3231 - высокоточные часы реального времени (RTC) со встроенными I 2 C интерфейсом, термокомпенсированным кварцевым генератором (TCXO) и кварцевым резонатором. Прибор имеет вход для подключения резервного автономного источника питания, позволяющего осуществлять хронометрирование и измерение температуры даже при отключенном основном напряжении питания. Встроенный кварцевый резонатор повышает срок службы прибора и уменьшает необходимое количество внешних элементов. DS3231 доступен в модификациях с коммерчески и индустриальным рабочим температурным диапазоном и упакован в 300 mil 16 контактный SO корпус.

RTC обеспечивает отсчет секунд, минут, часов, дней недели, дней месяца и года. Дата конца месяца определяется автоматически с учетом високосного года. Часы реального времени работают в 24 или 12- часовом формате с индикацией текущей половины суток (AM/PM). Прибор имеет два ежедневных будильника и выход прямоугольного сигнала с программируемой частотой. Обмен данными с прибором ведется через встроенный последовательный I 2 C совместимый интерфейс.