Биномиальное распределение дискретной случайной величины.

Биномиальное распределение

распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях. Если при каждом испытании вероятность появления события равна р, причём 0 ≤ p ≤ 1, то число μ появлений этого события при n независимых испытаниях есть случайная величина, принимающая значения m = 1, 2,.., n с вероятностями

где q = 1 - p, a - биномиальные коэффициенты (отсюда название Б. р.). Приведённая формула иногда называется формулой Бернулли. Математическое ожидание и Дисперсия величины μ, имеющей Б. р., равны М (μ) = np и D (μ) = npq , соответственно. При больших n, в силу Лапласа теоремы (См. Лапласа теорема), Б. р. близко к нормальному распределению (См. Нормальное распределение), чем и пользуются на практике. При небольших n приходится пользоваться таблицами Б. р.

Лит.: Большев Л. Н., Смирнов Н. В., Таблицы математической статистики, М., 1965.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Биномиальное распределение" в других словарях:

    Функция вероятности … Википедия

    - (binomial distribution) Распределение, позволяющее рассчитать вероятность наступления какого либо случайного события, полученного в результате наблюдений ряда независимых событий, если вероятность наступления, составляющих его элементарных… … Экономический словарь

    - (распределение Бернулли) распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна p(0 p 1). Именно, число? появлений этого события есть… … Большой Энциклопедический словарь

    биномиальное распределение - — Тематики электросвязь, основные понятия EN binomial distribution …

    - (распределение Бернулли), распределение вероятностей числа появлений некоторого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна р (0≤р≤1). Именно, число μ появлений этого события… … Энциклопедический словарь

    биномиальное распределение - 1.49. биномиальное распределение Распределение вероятностей дискретной случайной величины X, принимающей любые целые значения от 0 до n, такое что при х = 0, 1, 2, ..., n и параметрах n = 1, 2, ... и 0 < p < 1, где Источник … Словарь-справочник терминов нормативно-технической документации

    Распределение Бернулли, распределение вероятностей случайной величины X, принимающей целочисленные значения с вероятностями соответственно (биномиальный коэффициент; р параметр Б. р., наз. вероятностью положительного исхода, принимающей значения … Математическая энциклопедия

    - (распределение Бернулли), распределение вероятностей числа появлений нек рого события при повторных независимых испытаниях, если вероятность появления этого события в каждом испытании равна р (0<или = p < или = 1). Именно, число м появлений … Естествознание. Энциклопедический словарь

    Биномиальное распределение вероятностей - (binomial distribution) Распределение, которое наблюдается в случаях, когда исход каждого независимого эксперимента (статистического наблюдения) принимает одно из двух возможных значений: победа или поражение, включение или исключение, плюс или … Экономико-математический словарь

    биномиальное распределение вероятностей - Распределение, которое наблюдается в случаях, когда исход каждого независимого эксперимента (статистического наблюдения) принимает одно из двух возможных значений: победа или поражение, включение или исключение, плюс или минус, 0 или 1. То есть… … Справочник технического переводчика

Книги

  • Теория вероятностей и математическая статистика в задачах. Более 360 задач и упражнений , Д. А. Борзых. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к…
  • Теория вероятностей и математическая статистика в задачах: Более 360 задач и упражнений , Борзых Д.. В предлагаемом пособии содержатся задачи различного уровня сложности. Однако основной акцент сделан на задачах средней сложности. Это сделано намеренно с тем, чтобы побудить студентов к…

Биномиальное распределение - одно из важнейших распределений вероятностей дискретно изменяющейся случайной величины. Биномиальным распределением называется распределение вероятностей числа m наступления события А в n взаимно независимых наблюдениях . Часто событие А называют "успехом" наблюдения, а противоположное ему событие - "неуспехом", но это обозначение весьма условное.

Условия биномиального распределения :

  • в общей сложности проведено n испытаний, в которых событие А может наступить или не наступить;
  • событие А в каждом из испытаний может наступить с одной и той же вероятностью p ;
  • испытания являются взаимно независимыми.

Вероятность того, что в n испытаниях событие А наступит именно m раз, можно вычислить по формуле Бернулли:

,

где p - вероятность наступления события А ;

q = 1 - p - вероятность наступления противоположного события .

Разберёмся, почему биномиальное распределение описанным выше образом связано с формулой Бернулли . Событие - число успехов при n испытаниях распадается на ряд вариантов, в каждом из которых успех достигается в m испытаниях, а неуспех - в n - m испытаниях. Рассмотрим один из таких вариантов - B 1 . По правилу сложения вероятностей умножаем вероятности противоположных событий:

,

а если обозначим q = 1 - p , то

.

Такую же вероятность будет иметь любой другой вариант, в котором m успехов и n - m неуспехов. Число таких вариантов равно - числу способов, которыми можно из n испытаний получить m успехов.

Сумма вероятностей всех m чисел наступления события А (чисел от 0 до n ) равна единице:

где каждое слагаемое представляет собой слагаемое бинома Ньютона. Поэтому рассматриваемое распределение и называется биномиальным распределением.

На практике часто необходимо вычислять вероятности "не более m успехов в n испытаниях" или "не менее m успехов в n испытаниях". Для этого используются следующие формулы.

Интегральную функцию, то есть вероятность F (m ) того, что в n наблюдениях событие А наступит не более m раз , можно вычислить по формуле:

В свою очередь вероятность F (≥m ) того, что в n наблюдениях событие А наступит не менее m раз , вычисляется по формуле:

Иногда бывает удобнее вычислять вероятность того, что в n наблюдениях событие А наступит не более m раз, через вероятность противоположного события:

.

Какой из формул пользоваться, зависит от того, в какой из них сумма содержит меньше слагаемых.

Характеристики биномиального распределения вычисляются по следующим формулам .

Математическое ожидание: .

Дисперсия: .

Среднеквадратичное отклонение: .

Биномиальное распределение и расчёты в MS Excel

Вероятность биномиального распределения P n (m ) и значения интегральной функции F (m ) можно вычислить при помощи функции MS Excel БИНОМ.РАСП. Окно для соответствующего расчёта показано ниже (для увеличения нажать левой кнопкой мыши).


MS Excel требует ввести следующие данные:

  • число успехов;
  • число испытаний;
  • вероятность успеха;
  • интегральная - логическое значение: 0 - если нужно вычислить вероятность P n (m ) и 1 - если вероятность F (m ).

Пример 1. Менеджер фирмы обобщил информацию о числе проданных в течение последних 100 дней фотокамер. В таблице обобщена информация и рассчитаны вероятности того, что в день будет продано определённое число фотокамер.

День завершён с прибылью, если продано 13 или более фотокамер. Вероятность, что день будет отработан с прибылью:

Вероятность того, что день будет отработан без прибыли:

Пусть вероятность того, что день отработан с прибылью, является постоянной и равна 0,61, и число проданных в день фотокамер не зависит от дня. Тогда можно использовать биномиальное распределение, где событие А - день будет отработан с прибылью, - без прибыли.

Вероятность того, что из 6 дней все будут отработаны с прибылью:

.

Тот же результат получим, используя функцию MS Excel БИНОМ.РАСП (значение интегральной величины - 0):

P 6 (6 ) = БИНОМ.РАСП(6; 6; 0,61; 0) = 0,052.

Вероятность того, что из 6 дней 4 и больше дней будут отработаны с прибылью:

где ,

,

Используя функцию MS Excel БИНОМ.РАСП, вычислим вероятность того, что из 6 дней не более 3 дней будут завершены с прибылью (значение интегральной величины - 1):

P 6 (≤3 ) = БИНОМ.РАСП(3; 6; 0,61; 1) = 0,435.

Вероятность того, что из 6 дней все будут отработаны с убытками:

,

Тот же показатель вычислим, используя функцию MS Excel БИНОМ.РАСП:

P 6 (0 ) = БИНОМ.РАСП(0; 6; 0,61; 0) = 0,0035.

Решить задачу самостоятельно, а затем посмотреть решение

Пример 2. В урне 2 белых шара и 3 чёрных. Из урны вынимают шар, устанавливают цвет и кладут обратно. Попытку повторяют 5 раз. Число появления белых шаров - дискретная случайная величина X , распределённая по биномиальному закону. Составить закон распределения случайной величины. Определить моду, математическое ожидание и дисперсию.

Продолжаем решать задачи вместе

Пример 3. Из курьерской службы отправились на объекты n = 5 курьеров. Каждый курьер с вероятностью p = 0,3 независимо от других опаздывает на объект. Дискретная случайная величина X - число опоздавших курьеров. Построить ряд распределения это случайной величины. Найти её математическое ожидание, дисперсию, среднее квадратическое отклонение. Найти вероятность того, что на объекты опоздают не менее двух курьеров.

Рассмотрим Биномиальное распределение, вычислим его математическое ожидание, дисперсию, моду. С помощью функции MS EXCEL БИНОМ.РАСП() построим графики функции распределения и плотности вероятности. Произведем оценку параметра распределения p, математического ожидания распределения и стандартного отклонения. Также рассмотрим распределение Бернулли.

Определение . Пусть проводятся n испытаний, в каждом из которых может произойти только 2 события: событие «успех» с вероятностью p или событие «неудача» с вероятностью q =1-p (так называемая Схема Бернулли, Bernoulli trials ).

Вероятность получения ровно x успехов в этих n испытаниях равна:

Количество успехов в выборке x является случайной величиной, которая имеет Биномиальное распределение (англ. Binomial distribution ) p и n являются параметрами этого распределения.

Напомним, что для применения схемы Бернулли и соответственно Биномиального распределения, должны быть выполнены следующие условия:

  • каждое испытание должно иметь ровно два исхода, условно называемых «успехом» и «неудачей».
  • результат каждого испытания не должен зависеть от результатов предыдущих испытаний (независимость испытаний).
  • вероятность успеха p должна быть постоянной для всех испытаний.

Биномиальное распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Биномиального распределения имеется функция БИНОМ.РАСП() , английское название - BINOM.DIST(), которая позволяет вычислить вероятность того, что в выборке будет ровно х «успехов» (т.е. функцию плотности вероятности p(x), см. формулу выше), и интегральную функцию распределения (вероятность того, что в выборке будет x или меньше «успехов», включая 0).

До MS EXCEL 2010 в EXCEL была функция БИНОМРАСП() , которая также позволяет вычислить функцию распределения и плотность вероятности p(x). БИНОМРАСП() оставлена в MS EXCEL 2010 для совместимости.

В файле примера приведены графики плотности распределения вероятности и .

Биномиальное распределения имеет обозначение B (n ; p ) .

Примечание : Для построения интегральной функции распределения идеально подходит диаграмма типа График , для плотности распределения Гистограмма с группировкой . Подробнее о построении диаграмм читайте статью Основные типы диаграмм.

Примечание : Для удобства написания формул в файле примера созданы Имена для параметров Биномиального распределения : n и p.

В файле примера приведены различные расчеты вероятности с помощью функций MS EXCEL:

Как видно на картинке выше, предполагается, что:

  • В бесконечной совокупности, из которой делается выборка, содержится 10% (или 0,1) годных элементов (параметр p , третий аргумент функции =БИНОМ.РАСП() )
  • Чтобы вычислить вероятность, того что в выборке из 10 элементов (параметр n , второй аргумент функции) будет ровно 5 годных элементов (первый аргумент), нужно записать формулу: =БИНОМ.РАСП(5; 10; 0,1; ЛОЖЬ)
  • Последний, четвертый элемент, установлен =ЛОЖЬ, т.е. возвращается значение функции плотности распределения .

Если значение четвертого аргумента =ИСТИНА, то функция БИНОМ.РАСП() возвращает значение интегральной функции распределения или просто Функцию распределения . В этом случае можно рассчитать вероятность того, что в выборке количество годных элементов будет из определенного диапазона, например, 2 или меньше (включая 0).

Для этого нужно записать формулу:
= БИНОМ.РАСП(2; 10; 0,1; ИСТИНА)

Примечание : При нецелом значении х, . Например, следующие формулы вернут одно и тоже значение:
=БИНОМ.РАСП(2 ; 10; 0,1; ИСТИНА)
=БИНОМ.РАСП(2,9 ; 10; 0,1; ИСТИНА)

Примечание : В файле примера плотность вероятности и функция распределения также вычислены с использованием определения и функции ЧИСЛКОМБ() .

Показатели распределения

В файле примера на листе Пример имеются формулы для расчета некоторых показателей распределения:

  • =n*p;
  • (квадрата стандартного отклонения) = n*p*(1-p);
  • = (n+1)*p;
  • =(1-2*p)*КОРЕНЬ(n*p*(1-p)).

Выведем формулу математического ожидания Биномиального распределения , используя Схему Бернулли .

По определению случайная величина Х в схеме Бернулли (Bernoulli random variable) имеет функцию распределения :

Это распределение называется распределение Бернулли .

Примечание : распределение Бернулли – частный случай Биномиального распределения с параметром n=1.

Сгенерируем 3 массива по 100 чисел с различными вероятностями успеха: 0,1; 0,5 и 0,9. Для этого в окне Генерация случайных чисел установим следующие параметры для каждой вероятности p:

Примечание : Если установить опцию Случайное рассеивание (Random Seed ), то можно выбрать определенный случайный набор сгенерированных чисел. Например, установив эту опцию =25 можно сгенерировать на разных компьютерах одни и те же наборы случайных чисел (если, конечно, другие параметры распределения совпадают). Значение опции может принимать целые значения от 1 до 32 767. Название опции Случайное рассеивание может запутать. Лучше было бы ее перевести как Номер набора со случайными числами .

В итоге будем иметь 3 столбца по 100 чисел, на основании которых можно, например, оценить вероятность успеха p по формуле: Число успехов/100 (см. файл примера лист ГенерацияБернулли ).

Примечание : Для распределения Бернулли с p=0,5 можно использовать формулу =СЛУЧМЕЖДУ(0;1) , которая соответствует .

Генерация случайных чисел. Биномиальное распределение

Предположим, что в выборке обнаружилось 7 дефектных изделий. Это означает, что «очень вероятна» ситуация, что изменилась доля дефектных изделий p , которая является характеристикой нашего производственного процесса. Хотя такая ситуация «очень вероятна», но существует вероятность (альфа-риск, ошибка 1-го рода, «ложная тревога»), что все же p осталась без изменений, а увеличенное количество дефектных изделий обусловлено случайностью выборки.

Как видно на рисунке ниже, 7 – количество дефектных изделий, которое допустимо для процесса с p=0,21 при том же значении Альфа . Это служит иллюстрацией, что при превышении порогового значения дефектных изделий в выборке, p «скорее всего» увеличилось. Фраза «скорее всего» означает, что существует всего лишь 10% вероятность (100%-90%) того, что отклонение доли дефектных изделий выше порогового вызвано только сучайными причинами.

Таким образом, превышение порогового количества дефектных изделий в выборке, может служить сигналом, что процесс расстроился и стал выпускать бо льший процент бракованных изделий.

Примечание : До MS EXCEL 2010 в EXCEL была функция КРИТБИНОМ() , которая эквивалентна БИНОМ.ОБР() . КРИТБИНОМ() оставлена в MS EXCEL 2010 и выше для совместимости.

Связь Биномиального распределения с другими распределениями

Если параметр n Биномиального распределения стремится к бесконечности, а p стремится к 0, то в этом случае Биномиальное распределение может быть аппроксимировано .
Можно сформулировать условия, когда приближение распределением Пуассона работает хорошо:

  • p <0,1 (чем меньше p и больше n , тем приближение точнее);
  • p >0,9 (учитывая, что q =1- p , вычисления в этом случае необходимо производить через q х нужно заменить на n - x ). Следовательно, чем меньше q и больше n , тем приближение точнее).

При 0,1<=p<=0,9 и n*p>10 Биномиальное распределение можно аппроксимировать .

В свою очередь, Биномиальное распределение может служить хорошим приближением , когда размер совокупности N Гипергеометрического распределения гораздо больше размера выборки n (т.е., N>>n или n/N<<1).

Подробнее о связи вышеуказанных распределений, можно прочитать в статье . Там же приведены примеры аппроксимации, и пояснены условия, когда она возможна и с какой точностью.

СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье .


Конечно, при вычислении кумулятивной функции распределения следует воспользоваться упомянутой связью биномиального и бета- распределения. Этот способ заведомо лучше непосредственного суммирования, когда n > 10.

В классических учебниках по статистике для получения значений биномиального распределения часто рекомендуют использовать формулы, основанные на предельных теоремах (типа формулы Муавра-Лапласа). Необходимо отметить, что с чисто вычислительной точки зрения ценность этих теорем близка к нулю, особенно сейчас, когда практически на каждом столе стоит мощный компьютер. Основной недостаток приведенных аппроксимаций – их совершенно недостаточная точность при значениях n, характерных для большинства приложений. Не меньшим недостатком является и отсутствие сколько-нибудь четких рекомендаций о применимости той или иной аппроксимации (в стандартных текстах приводятся лишь асимптотические формулировки, они не сопровождаются оценками точности и, следовательно, мало полезны). Я бы сказал, что обе формулы пригодны лишь при n < 200 и для совсем грубых, ориентировочных расчетов, причем делаемых “вручную” с помощью статистических таблиц. А вот связь между биномиальным распределением и бета-распределением позволяет вычислять биномиальное распределение достаточно экономно.

Я не рассматриваю здесь задачу поиска квантилей: для дискретных распределений она тривиальна, а в тех задачах, где такие распределения возникают, она, как правило, и не актуальна. Если же квантили все-таки понадобятся, рекомендую так переформулировать задачу, чтобы работать с p-значениями (наблюденными значимостями). Вот пример: при реализации некоторых переборных алгоритмов на каждом шаге требуется проверять статистическую гипотезу о биномиальной случайной величине. Согласно классическому подходу на каждом шаге нужно вычислить статистику критерия и сравнить ее значение с границей критического множества. Поскольку, однако, алгоритм переборный, приходится определять границу критического множества каждый раз заново (ведь от шага к шагу объем выборки меняется), что непроизводительно увеличивает временные затраты. Современный подход рекомендует вычислять наблюденную значимость и сравнивать ее с доверительной вероятностью, экономя на поиске квантилей.

Поэтому в приводимых ниже кодах отсутствует вычисление обратной функции, взамен приведена функция rev_binomialDF , которая вычисляет вероятность p успеха в отдельном испытании по заданному количеству n испытаний, числу m успехов в них и значению y вероятности получить эти m успехов. При этом используется вышеупомянутая связь между биномиальным и бета распределениями.

Фактически, эта функция позволяет получать границы доверительных интервалов. В самом деле, предположим, что в n биномиальных испытаниях мы получили m успехов. Как известно, левая граница двухстороннего доверительного интервала для параметра p с доверительным уровнем равна 0, если m = 0, а для является решением уравнения . Аналогично, правая граница равна 1, если m = n, а для является решением уравнения . Отсюда вытекает, что для поиска левой границы мы должны решать относительно уравнение , а для поиска правой – уравнение . Они и решаются в функциях binom_leftCI и binom_rightCI , возвращающих верхнюю и нижнюю границы двустороннего доверительного интервала соответственно.

Хочу заметить, что если не нужна совсем уж неимоверная точность, то при достаточно больших n можно воспользоваться следующей аппроксимацией [Б.Л. ван дер Варден, Математическая статистика. М: ИЛ, 1960, гл. 2, разд. 7]: , где g – квантиль нормального распределения. Ценность этой аппроксимации в том, что имеются очень простые приближения, позволяющие вычислять квантили нормального распределения (см. текст о вычислении нормального распределения и соответствующий раздел данного справочника). В моей практике (в основном, при n > 100) эта аппроксимация давала примерно 3-4 знака, чего, как правило, вполне достаточно.

Для вычислений с помощью нижеследующих кодов потребуются файлы betaDF.h , betaDF.cpp (см. раздел о бета-распределении), а также logGamma.h , logGamma.cpp (см. приложение А). Вы можете посмотреть также пример использования функций.

Файл binomialDF.h

#ifndef __BINOMIAL_H__ #include "betaDF.h" double binomialDF(double trials, double successes, double p); /* * Пусть имеется "trials" независимых наблюдений * с вероятностью "p" успеха в каждом. * Вычисляется вероятность B(successes|trials,p) того, что число * успехов заключено между 0 и "successes" (включительно). */ double rev_binomialDF(double trials, double successes, double y); /* * Пусть известна вероятность y наступления не менее m успехов * в trials испытаниях схемы Бернулли. Функция находит вероятность p * успеха в отдельном испытании. * * В вычислениях используется следующее соотношение * * 1 - p = rev_Beta(trials-successes| successes+1, y). */ double binom_leftCI(double trials, double successes, double level); /* Пусть имеется "trials" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "successes". * Вычисляется левая граница двустороннего доверительного интервала * с уровнем значимости level. */ double binom_rightCI(double n, double successes, double level); /* Пусть имеется "trials" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "successes". * Вычисляется правая граница двустороннего доверительного интервала * с уровнем значимости level. */ #endif /* Ends #ifndef __BINOMIAL_H__ */

Файл binomialDF.cpp

/***********************************************************/ /* Биномиальное распределение */ /***********************************************************/ #include #include #include "betaDF.h" ENTRY double binomialDF(double n, double m, double p) /* * Пусть имеется "n" независимых наблюдений * с вероятностью "p" успеха в каждом. * Вычисляется вероятность B(m|n,p) того, что число успехов заключено * между 0 и "m" (включительно), т.е. * сумму биномиальных вероятностей от 0 до m: * * m * -- (n) j n-j * > () p (1-p) * -- (j) * j=0 * * Вычисления не подразумевают тупое суммирование - используется * следующая связь с центральным бета-распределением: * * B(m|n,p) = Beta(1-p|n-m,m+1). * * Аргументы должны быть положительными, причем 0 <= p <= 1. */ { assert((n > 0) && (p >= 0) && (p <= 1)); if (m < 0) return 0; else if (m == 0) return pow(1-p, n); else if (m >= n) return 1; else return BetaDF(n-m, m+1).value(1-p); }/* binomialDF */ ENTRY double rev_binomialDF(double n, double m, double y) /* * Пусть известна вероятность y наступления не менее m успехов * в n испытаниях схемы Бернулли. Функция находит вероятность p * успеха в отдельном испытании. * * В вычислениях используется следующее соотношение * * 1 - p = rev_Beta(y|n-m,m+1). */ { assert((n > 0) && (m >= 0) && (m <= n) && (y >= 0) && (y <= 1)); return 1-BetaDF(n-m, m+1).inv(y); }/*rev_binomialDF*/ ENTRY double binom_leftCI(double n, double m, double y) /* Пусть имеется "n" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "m". * Вычисляется левая граница двухстороннего доверительного интервала * с уровнем значимости y. */ { assert((n > 0) && (m >= 0) && (m <= n) && (y >= 0.5) && (y < 1)); return BetaDF(m, n-m+1).inv((1-y)/2); }/*binom_leftCI*/ ENTRY double binom_rightCI(double n, double m, double y) /* Пусть имеется "n" независимых наблюдений * с вероятностью "p" успеха в каждом * и количество успехов равно "m". * Вычисляется правая граница доверительного интервала * с уровнем значимости y. */ { assert((n > 0) && (m >= 0) && (m <= n) && (y >= 0.5) && (y < 1)); return BetaDF(m+1, n-m).inv((1+y)/2); }/*binom_rightCI*/