Чистый изгиб. Архив рубрики: Изгиб Поперечный изгиб

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1). Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а), то при чистом изгибе она деформируется следующим образом (рис. 6.1, б):

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. 6.1

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называетсянейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. 6.2

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной
. До деформации сечения, ограничивающие элемент
, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол
. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется
. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна
, отстоящего на расстоянииот нейтрального слоя.

Длина этого волокна после деформации (длина дуги
) равна
. Учитывая, что до деформации все волокна имели одинаковую длину
, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что
, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки
получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором
. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента
в поперечном сечении (6.1)

.

Вспомним, что интеграл
представляет собой момент инерции сечения относительно оси

.

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя
) с действующим в сечении моментом. Произведение
носит название жесткости сечения при изгибе, Н·м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы
и изгибающего момента

Поскольку
,

;

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и- главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сеченияотносительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

- сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента
действует еще продольная сила
и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

Изгибом называется вид деформации, при котором искривляется продольная ось бруса. Прямые брусья, работающие на изгиб, называются балками. Прямым изгибом называется изгиб, при котором внешние силы, действующие на балку, лежат в одной плоскости (силовой плоскости), проходящей через продольную ось балки и главную центральную ось инерции поперечного сечения.

Изгиб называется чистым , если в любом поперечном сечении балки возникает только один изгибающий момент.

Изгиб, при котором в поперечном сечении балки одновременно действуют изгибающий момент и поперечная сила, называется поперечным . Линия пересечения силовой плоскости и плоскости поперечного сечения называется силовой линией .

Внутренние силовые факторы при изгибе балки.

При плоском поперечном изгибе в сечениях балки возникают два внутренних силовых фактора: поперечная сила Q и изгибающий момент М. Для их определения используют метод сечений (см. лекцию 1). Поперечная сила Q в сечении балки равна алгебраической сумме проекций на плоскость сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для поперечных сил Q:

Изгибающий момент М в сечении балки равен алгебраической сумме моментов относительно центра тяжести этого сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для изгибающих моментов M:

Дифференциальные зависимости Журавского.

Между интенсивностью q распределенной нагрузки, выражениями для поперечной силы Q и изгибающего момента М установлены дифференциальные зависимости:

На основе этих зависимостей можно выделить следующие общие закономерности эпюр поперечных сил Q и изгибающих моментов М:

Особенности эпюр внутренних силовых факторов при изгибе.

1. На участке балки, где нет распределенной нагрузки, эпюра Q представлена прямой линией , параллельной базе эпюре, а эпюра М - наклонной прямой (рис. а).

2. В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть скачок , равный значению этой силы, а на эпюре М -точка перелома (рис. а).

3. В сечении, где приложен сосредоточенный момент, значение Q не изменяется, а эпюра М имеет скачок , равный значению этого момента, (рис. 26, б).

4. На участке балки с распределенной нагрузкой интенсивности q эпюра Q изменяется по линейному закону, а эпюра М - по параболическому, причем выпуклость параболы направлена навстречу направлению распределенной нагрузки (рис. в, г).

5. Если в пределах характерного участка эпюра Q пересекает базу эпюры, то в сечении, где Q = 0, изгибающий момент имеет экстремальное значение M max или M min (рис. г).

Нормальные напряжения при изгибе.

Определяются по формуле:

Моментом сопротивления сечения изгибу называется величина:

Опасным сечением при изгибе называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение.

Касательные напряжения при прямом изгибе.

Определяются по формуле Журавского для касательных напряжений при прямом изгибе балки:

где S отс - статический момент поперечной площади отсеченного слоя продольных волокон относительно нейтральной линии.

Расчеты на прочность при изгибе.

1. При проверочном расчете определяется максимальное расчетное напряжение, которое сравнивается с допускаемым напряжением:

2. При проектном расчете подбор сечения бруса производится из условия:

3. При определении допускаемой нагрузки допускаемый изгибающий момент определяется из условия:

Перемещения при изгибе.

Под действием нагрузки при изгибе ось балки искривляется. При этом наблюдается растяжение волокон на выпуклой и сжатие - на вогнутой частях балки. Кроме того, происходит вертикальное перемещение центров тяжести поперечных сечений и их поворот относительно нейтральной оси. Для характеристики деформации при изгибе используют следующие понятия:

Прогиб балки Y - перемещение центра тяжести поперечного сечения балки в направлении, перпендикулярном к ее оси.

Прогиб считают положительным, если перемещение центра тяжести происходит вверх. Величина прогиба меняется по длине балки, т.е. y = y (z)

Угол поворота сечения - угол θ, на который каждое сечение поворачивается по отношению к своему первоначальному положению. Угол поворота считают положительным при повороте сечения против хода часовой стрелки. Величина угла поворота меняется по длине балки, являясь функцией θ = θ (z).

Самыми распространёнными способами определения перемещений является метод Мора и правило Верещагина .

Метод Мора.

Порядок определения перемещений по методу Мора:

1. Строится «вспомогательная система» и нагружается единичной нагрузкой в точке, где требуется определить перемещение. Если определяется линейное перемещение, то в его направлении прикладывается единичная сила, при определении угловых перемещений – единичный момент.

2. Для каждого участка системы записываются выражения изгибающих моментов М f от приложенной нагрузки и М 1 - от единичной нагрузки.

3. По всем участкам системы вычисляют и суммируют интегралы Мора, получая в результате искомое перемещение:

4. Если вычисленное перемещение имеет положительный знак, то это значит, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное перемещение противоположно направлению единичной силы.

Правило Верещагина.

Для случая, когда эпюра изгибающих моментов от заданной нагрузки имеет произвольное, а от единичной нагрузки – прямолинейное очертание, удобно использовать графоаналитический способ, или правило Верещагина.

где A f – площадь эпюры изгибающего момента М f от заданной нагрузки; y c – ордината эпюры от единичной нагрузки под центром тяжести эпюры М f ; EI x – жесткость сечения участка балки. Вычисления по этой формуле производятся по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Величина (A f *y c) считается положительной, если обе эпюры располагаются по одну сторону от балки, отрицательной, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента). Сложная эпюра М f должна быть разбита на простые фигуры(применяется так называемое "расслоение эпюры"), для каждой из которых легко определить ординату центра тяжести. При этом площадь каждой фигуры умножается на ординату под ее центром тяжести.

Изгибом называется деформация, при которой ось стержня и все его волокна, т. е. продольные линии, параллельные оси стержня, искривляются под действием внешних сил. Наиболее простой случай изгиба получается тогда, когда внешние силы будут лежать в плоскости, проходящей через центральную ось стержня, и не дадут проекций на эту ось. Такой случай изгиба называют поперечным изгибом. Различают плоский изгиб и косой.

Плоский изгиб – такой случай, когда изогнутая ось стержня расположена в той же плоскости, в которой действуют внешние силы.

Косой (сложный) изгиб – такой случай изгиба, когда изогнутая ось стержня не лежит в плоскости действия внешних сил.

Работающий на изгиб стержень обычно называют балкой.

При плоском поперечном изгибе балок в сечении с системой координат у0х могут возникать два внутренних усилия – поперечная сила Q у и изгибающий момент М х; в дальнейшем для них вводятся обозначения Q и M. Если в сечении или на участке балки поперечная сила отсутствует (Q=0), а изгибающий момент не равен нулю или М – const, то такой изгиб принято называть чистым .

Поперечная сила в каком-либо сечении балки численно равна алгебраической сумме проекций на ось у всех сил (включая опорные реакции), расположенных по одну сторону (любую) от проведенного сечения.

Изгибающий момент в сечении балки численно равен алгебраической сумме моментов всех сил (включая и опорные реакции), расположенных по одну сторону (любую) от проведенного сечения относительно центра тяжести этого сечения, точнее, относительно оси, проходящей перпендикулярно плоскости чертежа через центр тяжести проведенного сечения.

Сила Q представляет равнодействующую распределенных по сечению внутренних касательных напряжений , а момент М сумму моментов вокруг центральной оси сечения Х внутренних нормальных напряжений.

Между внутренними усилиями существует дифференциальная зависимость

которая используется при построении и проверке эпюр Q и M.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков, в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем . Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линие й или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений. Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе. Поперечное сечение балки при изгибе искажается. За счет поперечной деформации размеры поперечного сечения в сжатой зоне балки увеличиваются, а в растянутой сжимаются.

Допущения для вывода формул. Нормальные напряжения

1) Выполняется гипотеза плоских сечений.

2) Продольные волокна друг на друга не давят и, следовательно, под действием нормальных напряжений линейные растяжения или сжатия работают.

3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми.

4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости.

5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков.

6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

При чистом изгибе балки на площадках в ее сечении действуют только нормальные напряжения , определяемые по формуле:

где у – координата произвольной точки сечения, отчитываемая от нейтральной линии — главной центральной оси х.

Нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю.

Характер эпюр нормальных напряжений для симметричных сечений относительно нейтральной линии

Характер эпюр нормальных напряжений для сечений, не обладающих симметрией относительно нейтральной линии

Опасными являются точки, наиболее удаленные от нейтральной линии.

Выберем некоторое сечение

Для любой точки сечения,назовем ее точкой К , условие прочности балки по нормальным напряжениям имеет вид:

, где н.о. — это нейтральная ось

это осевой момент сопротивления сечения относительно нейтральной оси. Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Условие прочности по нормальным напряжениям:

Нормальное напряжение равно отношению максимального изгибающего момента к осевому моменту сопротивления сечения относительно нейтральной оси.

Если материал неодинаково сопротивляется растяжению и сжатию, то необходимо использовать два условия прочности: для зоны растяжения с допускаемым напряжением на растяжение; для зоны сжатия с допускаемым напряжением на сжатие.

При поперечном изгибе балки на площадках в ее сечении действуют как нормальные , так и касательные напряжения.

Поперечный изгиб получается, когда сила действует на брус по направлению, поперечному к его длине.

Рассмотрим два варианта поперечного изгиба: первый, балка лежит на двух опорах, причем груз расположен на балке в пределах между опорами и второй, балка прочно заделана одним концом в стену, а груз находится на свободном конце балки.

Прежде всего выясним, какое влияние на изгиб оказывает место приложения силы. Если мы положим доску на две опоры и будем по ней двигаться от опоры к середине, то прогиб доски будет непрерывно возрастать по мере нашего приближения к середине. Из этого опыта можно сделать заключение, что чем ближе к середине будет приложена сила, тем больше будет прогиб балки. То же самое явление мы будем наблюдать при опыте с балкой, заделанной одним концом в стену, при перемещении груза от стены к концу балки.

В зданиях и сооружениях на балку могут действовать одновременно несколько сил, и притом они могут перемещаться, как, например, автомобили на мосту. Определить влияние этих сил на балку не так просто, как это мы делаем при растяжении или сжатии. Зависимость получается не простая, и человеку без высшего технического образования заниматься этим вопросом сложно.

Как уже было сказано, сила может быть приложена в любом месте балки. Такая сила, имеющая одну точку приложения, называется сосредоточенной .

Если сила равномерно распределена по всей длине балки, то такая сила называется равномерно-распределенной .

Например, на балке в одном месте находится мешок с песком весом 100 кг, это будет сосредоточенная нагрузка (сила), а если тот же груз равномерно рассыпать по всей длине балки, то это будет равномерно-распределенная нагрузка. И в том и в другом случае величина силы одинакова 100 кг, но способ распределения различен. В зависимости от этого и напряжение в балке будет различное, а именно, при сосредоточенной по середине балки нагрузке напряжение будет в 2 раза больше, чем при нагрузке, равномерно-распределенной.

Нам уже известно, что, чем больше сосредоточенный груз будет приближаться к опоре, тем меньше будет прогиб балки, и тем меньше напряжение в материале. Следовательно, если балка будет иметь достаточную прочность при расположении какого-либо груза по середине, то она, безусловно, выдержит этот груз, если он будет находиться в каком угодно месте балки.

Далее, очень интересно выяснить, какие получаются напряжения в нагруженной балке, и как они распределены. Произведем такой опыт: возьмем брус и сделаем на нем пропил в верхней стороне, а затем его нагрузим. Мы увидим, что обе стороны пропила сблизятся вплотную друг к другу. Из этого опыта мы заключаем, что в верхней части бруса, под влиянием нагрузки, происходит сжатие.

Если мы теперь сделаем пропил в нижней стороне бруса и опять его нагрузим, то увидим, что края пропила разошлись и пропил в нижней части сделался очень широким. Из этого мы заключаем, что в нижней части бруса, под влиянием нагрузки, происходит растяжение. Итак, следовательно, в верхней части бруса или балки под влиянием нагрузки происходит сжатие, а в нижней - растяжение. Но так как это происходит в одной и той же балке одновременно, то очевидно, что где-то есть место, в котором растяжение переходит в сжатие, и наоборот. Такое место, действительно, имеется в каждой балке. Эту линию, или вернее плоскость раздела сжатия от растяжения, называют нейтральной осью. В деревянной балке прямоугольного сечения она находится приблизительно посредине высоты.

Так как мы теперь знаем распределение усилий в брусе, находящемся под грузом, то нам будет вполне понятно, как иногда выпрямляют сильно погнувшуюся балку. Для этого ее подпирают и в верхней части балки делают пропил с забиванием в него клина с одновременным поддомкрачиванием снизу. Так как в целой балке, находящейся под грузом, сила растяжения в нижней части равна силе сжатия в верхней, то при забивке клиньев, очевидно, сила сжатия в верхней части балки увеличится, и балка искривится в обратную сторону, т. е. выпрямится.

Далее, не трудно убедиться, что при изгибе балки в ней появляются скалывающие усилия. Для этого опыта возьмем два одинаковой длины бруса и положим один брус на другой. В ненагруженном состоянии торцы их будут совпадать, как показано на рис. 4а. Если теперь мы их нагрузим, то произойдет прогиб брусьев, и торцы их будут расположены так, как показано на рис. 4б. Мы видим, что торцы брусьев не совпадают и нижняя кромка торца верхнего бруса выступает за линию верхней кромки торца нижнего бруса. Очевидно, что по плоскости соприкосновения брусьев произошел сдвиг, в результате которого и появилось выдвижение концов одного бруса над другим. Если бы брус был из одного куска дерева, то очевидно, что никаких изменений на концах бруса мы не заметили бы, но несомненно, что в этом брусе в нейтральной плоскости были бы скалывающие усилия, и если бы прочность дерева была недостаточна, то по концам бруса обнаружилось бы расслоение.

Рис. 4. Изгиб составной балки

После этого опыта становится вполне понятным устройство составных балок на шпонках. На рис. 5 показана такая балка, состоящая из трех брусков, между которыми врублены шпонки. Очевидно, что конец одной балки не может сдвинуться относительно другой, так как этому перемещению препятствуют шпонки. Чем прочнее связь между шпонками и балками, тем жестче балка.

Продолжим предыдущий опыт. Если мы через оба бруса проведем на равном расстоянии черты карандашом, как показано на рис. 4а, и затем нагрузим брусья, то увидим, что средняя черта на обоих брусьях останется без изменения, а все остальные сместятся, как показано на рис. 4б. При этом расхождение черточек будет тем больше, чем дальше они отстоят от середины. Из этого опыта мы заключаем, что наибольшая скалывающая сила находится у концов балок. Вот почему в балках на шпонках следует шпонки ставить чаще к концам и реже к середине.


Рис. 5. Составная балка с врубленными шпонками

Итак, все проделанные опыты убеждают нас в том, что в нагруженной балке возникают различные напряжения.

Будем опять учиться на опыте. Все знают, что если положить доску плашмя и нагрузить ее, то она заметно прогнется, а если ту же доску поставить на ребро и нагрузить ее той же нагрузкой, то прогиб почти не будет заметен. Этот опыт убеждает нас в том, что величина изгиба зависит, главным образом, от высоты балки, а не от ширины. Если взять два квадратных бруса и сплотить их шпонками и болтами, так чтобы получилась одна балка высотою в два квадрата, то такая балка сможет выдержать груз в два раза больше, чем обе эти балки, положенные рядом. При трех балках груз может быть в 4,5 раза больше и т. д.

Из этих опытов нам ясно, что гораздо выгоднее увеличивать высоту балки, чем ее ширину, но, конечно, до известного предела, так как при очень высокой и тонкой балке она сможет изогнуться в сторону.

Так как балки вытесываются или выпиливаются из бревен, то является вопрос, какое же отношение должно быть между высотой и шириной балки, чтобы получить балку наибольшей прочности. Строительная механика дает точный ответ на этот вопрос, а именно, в высоте должно быть 7 каких-либо мер, а в ширине таких же точно мер только 5. Практически это делается, следующим образом. На торце круглого бревна (рис.6) проводят, через центр линию и делят ее на три равные части. Затем из этих точек по наугольнику проводят в противоположные стороны линии до края торца. Наконец, эти крайние точки соединяют с концами линии, проведенной через центр торца, и у нас получится прямоугольник, у которого длинная сторона будет иметь 7 мер, а короткая таких же 5. По этим линиям производится опиловка или обтеска бревна и получается самая прочная балка прямоугольного сечения, какую только можно сделать из данного бревна.


Рис. 6. Балка наибольшей прочности, которую можно вырубить из бревна

Интересно отметить, что, круглое бревно менее прочно в отношении изгиба, чем тоже бревно со слегка стесанными горбылями с верхней и нижней стороны.

На основании всего вышеизложенного можно сделать заключение, что точное определение размеров балок зависит от многих обстоятельств: от числа и местоположения грузов, от рода нагрузки, от способа ее распределения (сплошная или сосредоточенная), от формы балки, ее длины и т. д. Учет всех этих обстоятельств довольно сложен и плотнику-практику он недоступен.

При определении размеров балок, необходимо, кроме прочности, иметь в виду также и прогиб балок. Иногда на постройке плотники высказывают недоумение, почему ставится такая толстая балка, можно было бы взять и потоньше. Совершенно верно, и более тонкая балка выдержит тот груз, который на ней будет расположен, но когда впоследствии по полу на тонких балках будут ходить или танцевать, то такой пол будет гнуться, как качели. Для избегания очень неприятной зыбкости пола, балки кладут толще, чем это требуется по условиям прочности. В жилых домах прогиб балок допускается не свыше 1/250 пролета. Если, например, пролет 9 м, то есть 900 см, то наибольший прогиб должен быть не больше 900: 250, что составит З,6 см.

В заключение следует упомянуть об одном практическом правиле для определения высоты балок в жилых зданиях, а именно: высота балки должна быть не менее 1/24 длины балки. Например, если длина балки 8 м (800 см), то высота должна быть 800: 24 = 33 см.

Для практических целей, помимо всего вышеизложенного, следует ознакомиться с прилагаемыми таблицами, которые дадут возможность, без всяких затруднений легко и быстро определять нужный размер балки для случая равномерно-распределенной нагрузки. В этих таблицах указаны допускаемые нагрузки на балки прямоугольного и круглого сечения, для различных размеров балок и для разных пролетов.

Пример1. В помещении с пролетом 8 м имеется нагрузка весом 2,5 т (2500 кг). Нужно подобрать балки для этой нагрузки.В таблице прямоугольных балок рассматриваем столбец с пролетом 8 м. Нагрузку в 2500 кг может выдержать балка сечением 31×22 см или две балки 26×18,5, или три балки 24,5×17,5 см и т.д. Балки нужно распределить с соответствующим шагом учитывая, что крайние балки несут половину нагрузки от балок, расположенных посредине.

Для груза, расположенного сосредоточенно по середине пролета, величина его должна быть в два раза меньше, чем указано в таблице.

Пример 2. Для прямоугольной балки 7 к 5 из 32-сантиметрового бревна при пролете в 6 м можно допустить равномерно-распределенную нагрузку в 2632 кг (см. таблицу). Если груз будет сосредоточен посредине балки, то можно допустить нагрузку лишь вдвое меньшую, а именно 2632: 2 = 1316 кг.Пример 3. Какого размера балка из бревна, отесанного или опиленного на два канта, выдержит сосредоточенную посредине нагрузку в 1,6 тонны (1600 кг), при пролете в 8 м?

В задании дана сосредоточенная сила, мы знаем, что эта балка должна выдерживать в два раза большую равномерно-распределенную нагрузку, то есть 1600×2=3200 кг. Смотрим в таблице для лафета столбец для пролета в 8 м. Ближайшая к 3200 цифра в таблице 3411 каковой цифре соответствует бревно диаметром в 34 см.

Если балка заделана прочно одним концом в стену, то она может выдержать груз, сосредоточенный на ее свободном конце, в 8 раз меньший, чем та же балка, лежащая на двух опорах и несущая равномерно-распределенную нагрузку.

Пример 4. Какого диаметра бревно, отесанное или опиленное на четыре канта, прочно заделанное одним концом в стену и имеющее свободный конец в 3 м, может выдержать сосредоточенный груз в 800 кг, прикрепленный к ее свободному концу?Если бы эта балка лежала, на двух опорах, то она могла бы выдержать груз в 8 раз больший, то есть 800 × 8 = 6400 кг. Смотрим в таблице для обзольного бруса столбец для пролета в 3 м и находим две ближайшие цифры 5644 кг и 6948 кг. Этим цифрам соответствуют бревна в 30 и 32 см. Можно взять бревно в 31 см.

Если на балке, заделанной одним концом в стену, нагрузка распределена равномерно, то такая балка может выдержать нагрузку в 4 раза меньшую, чем та же балка, лежащая на двух опорах.

Пример 5. Какой груз может выдержать балка прямоугольного сечения, заделанная одним концом в стену, со свободным концом длиною в 4 м, нагруженная равномерно-распределенной нагрузкой общим весом в 600 кг?Если бы эта балка лежала на двух опорах, то она могла бы выдержать груз в 4 раза больший, то есть 600×4=2400 кг. Смотрим в таблице для балки 7 к 5 столбец для пролета в 4 м. Ближайшая цифра 2746, каковой цифре соответствует бревно в 28 см, или брус в 23×16 см.

При расчетах балок может встретиться такой вопрос какое давление испытывают опоры (стены или колонны) от лежащей на них балки с грузом?

Если груз распределен равномерно по всей балке или сосредоточен посредине, то обе опоры несут одинаковую нагрузку.

Если груз расположен ближе к одной опоре, то эта опора несет больший груз, чем другая. Чтобы узнать какой именно, - нужно величину груза умножить на расстояние до другой опоры и разделить на пролет.

Пример 6. На балке, длиною в 4 м, расположен груз в 100 кг, в расстоянии 1 м от левой опоры и, следовательно, в расстоянии 3 м от правой. Требуется найти нагрузку на левую опору.Умножаем 100 на 3 и полученное число делим на 4, получим 75. Следовательно, левая опора испытывает давление в 75, а правая оставшуюся часть нагрузки, то есть 100-75=25 кг.

Если на балке находятся несколько грузов, то расчет нужно сделать для каждого груза отдельно, и затем полученные нагрузки на одну опору сложить.