Динамическая вязкость размерность. Что такое вязкость? Единицы измерения вязкости

В состоянии равновесия разные фазы вещества находятся в покое относительно друг друга. При их относительном движении появляются силы торможения (вязкость), которые стремятся уменьшить относительную скорость. Механизм вязкости можно свести к обмену импульсом упорядоченного перемещения молекул между разными слоями в газах и жидкостях. Возникновение сил вязкого трения в газах и жидкостях относят к процессам переноса. Вязкость твердых тел имеет ряд существенных особенностей и рассматривается отдельно.

ОПРЕДЕЛЕНИЕ

Кинематическую вязкость определяют как отношение динамической вязкости () к плотности вещества. Обозначают ее обычно буквой (ню). Тогда математически определение кинематического коэффициента вязкости запишем как:

где — плотность газа (жидкости).

Так как в выражении (1) плотность вещества находится в знаменателе, то, например, разреженный воздух при давлении 7,6 мм рт. ст. и температуре 0 o C имеет кинематическую вязкость в два раза большую, чем глицерин.

Кинематическая вязкость воздуха при нормальных условиях часто считается равной , поэтому при движении в атмосфере применяют закон Стокса, когда произведение радиуса тела (см) на его скорость () не превышает 0,01.

Кинематическая вязкость воды при нормальных условиях часто считается порядка , поэтому при движении в воде применяют закон Стокса, когда произведение радиуса тела (см) на его скорость () не превышает 0,001.

Кинематическая вязкость и числа Рейнольдса

Числа Рейнольдса (Re) выражают при помощи кинематической вязкости:

где — линейные размеры тела, движущегося в веществе, — скорость движения тела.

В соответствии с выражением (2) для тела, движущегося с неизменной скоростью число убывает, если кинематическая вязкость растет. Если число Re небольшое, то в лобовом сопротивлении силы вязкого трения преобладают над силами инерции. И наоборот, большие числа Рейнольдса, которые наблюдаются при малых кинематических вязкостях, указывают на приоритет сил инерции над трением.

Число Рейнольдса мало при заданном значении кинематической вязкости, когда малы размеры тела и скорость его движения.

Единицы измерения кинематического коэффициента вязкости

Основной единицей измерения кинематической вязкости в системе СИ является:

Примеры решения задач

ПРИМЕР 1

Задание Металлический шарик (плотность его равна ) равномерно опускается в жидкости (плотность жидкости равна кинематическая вязкость ). При каком максимально возможном диаметре шарика его обтекание останется ламинарным? Считайте, что переход к турбулентному обтеканию происходит при Re=0,5. За характерный размер принять диаметр шарика.
Решение Сделаем рисунок

Используя второй закон Ньютона, получим выражение:

где — сила Архимеда, — сила вязкого трения.

В проекции на ось Y уравнение (1.1) примет вид:

При этом имеем:

При этом:

Подставим результаты (1.3)- (1.5) в (1.2), имеем:

Число Рейнольдса определено в нашем случае как:

· Закон сохранения импульса

См. также: Портал:Физика

Характер падения тела в жидкости с малой (сверху) и с большой (снизу) вязкостью

Вя́зкость (вну́треннее тре́ние) - одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате происходит рассеяние в виде тепла работы, затрачиваемой на это перемещение.

Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей - это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

Различают динамическую вязкость (единицы измерения: Па·с = 10 пуаз) и кинематическую вязкость (единицы измерения: стокс , м²/с, внесистемная единица - градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 10 11 −10 12 Па·с

Прибор для измерения вязкости называется вискозиметром .

Сила вязкого трения

Сила вязкого трения F пропорциональна скорости относительного движения V тел, пропорциональна площади S и обратно пропорциональна расстоянию между плоскостями h:

Коэффициент пропорциональности, зависящий от сорта жидкости или газа, называют коэффициентом динамической вязкости .

Качественно существенное отличие сил вязкого трения от сухого трения , кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя , и наоборот - под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.

Вторая вязкость

Вторая вязкость, или объёмная вязкость - внутреннее трение при переносе импульса в направлении движения. Влияет только при учёте сжимаемости и/или при учёте неоднородности коэффициента второй вязкости по пространству.

Если динамическая (и кинематическая) вязкость характеризует деформацию чистого сдвига, то вторая вязкость характеризует деформацию объёмного сжатия.

Объёмная вязкость играет большую роль в затухании звука и ударных волн , и экспериментально определяется путём измерения этого затухания.

Вязкость газов

  • μ = динамическая вязкость в (Па·с) при заданной температуре T ,
  • μ 0 = контрольная вязкость в (Па·с) при некоторой контрольной температуре T 0 ,
  • T = заданная температура в Кельвинах,
  • T 0 = контрольная температура в Кельвинах,
  • C = постоянная Сазерленда для того газа, вязкость которого требуется определить.

Эту формулу можно применять для температур в диапазоне 0 < T < 555 K и при давлениях менее 3,45 МПа с ошибкой менее 10 %, обусловленной зависимостью вязкости от давления.

Постоянная Сазерленда и контрольные вязкости газов при различных температурах приведены в таблице ниже

Газ C T 0 μ 0

Вязкость жидкостей

Динамический коэффициент вязкости

Коэффициент вязкости (динамическая вязкость) может быть получен на основе соображений о движениях молекул. Очевидно, что будет тем меньше, чем меньше время t «оседлости» молекул. Эти соображения приводят к выражению для коэффициента вязкости, называемому уравнением Френкеля-Андраде:

Иная формула, представляющая коэффициент вязкости, была предложена Бачинским . Как показано, коэффициент вязкости определяется межмолекулярными силами, зависящими от среднего расстояния между молекулами; последнее определяется молярным объёмом вещества . Многочисленные эксперименты показали, что между молярным объёмом и коэффициентом вязкости существует соотношение

где с и b - константы. Это эмпирическое соотношение называется формулой Бачинского .

Динамическая вязкость жидкостей уменьшается с увеличением температуры, и растёт с увеличением давления.

Кинематическая вязкость

В технике, в частности, при расчёте гидроприводов и в триботехнике , часто приходится иметь дело с величиной

и эта величина получила название кинематической вязкости. Здесь - плотность жидкости; - динамическая вязкость (см. выше).

Кинематическая вязкость в старых источниках часто указана в сантистоксах (сСт). В СИ эта величина переводится следующим образом:

1 сСт = 1мм 2 1c = 10 −6 м 2 c

Ньютоновские и неньютоновские жидкости

Ньютоновскими называют жидкости, для которых вязкость не зависит от скорости деформации. В уравнении Навье - Стокса для ньютоновской жидкости имеет место аналогичный вышеприведённому закон вязкости (по сути, обобщение закона Ньютона, или закон Навье):

где - тензор вязких напряжений.

где - энергия активации вязкости (кДж/моль), - температура (), - универсальная газовая постоянная (8,31 Дж/моль·К) и - некоторая постоянная.

Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости изменяется от большой величины при низких температурах (в стеклообразном состоянии) на малую величину при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда , или ломкие, когда . Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса : сильные материалы имеют , в то время как ломкие материалы имеют .

Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением:

с постоянными , , , и , связанными с термодинамическими параметрами соединительных связей аморфных материалов.

В узких температурных интервалах недалеко от температуры стеклования это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.

Вязкость

Если температура существенно ниже температуры стеклования , двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса

с высокой энергией активации , где - энтальпия разрыва соединительных связей, то есть создания конфигуронов, а - энтальпия их движения. Это связано с тем, что при аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.

При двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса

но с низкой энергией активации . Это связано с тем, что при аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.

Относительная вязкость

В технических науках часто пользуются понятием относительной вязкости , под которой понимают отношение коэффициента динамической вязкости (см. выше) раствора к коэффициенту динамической вязкости чистого растворителя:

где μ - динамическая вязкость раствора; μ 0 - динамическая вязкость растворителя.

Вязкость некоторых веществ

Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды.

Вязкость воздуха

Вязкость воздуха зависит, в основном, от температуры. При 15.0 °C вязкость воздуха составляет 1.78·10 −5 кг/(м·с), 17.8 мкПа.с или 1.78·10 −5 Па.с.. Можно найти вязкость воздуха как функцию температуры с помощью Программы расчёта вязкостей газов

Вязкость воды

Начнем с азов. Любая жидкость в данном случае масло, применяемая в сложных механизмах, имеет свою вязкость. Оставим в покое химию, хотя она, безусловно, делает смазку именно тем продуктом, за который мы платим деньги.

Рассмотрим одно из важнейших физических свойств — вязкость масла. Несмотря на то, что параметр непосредственно зависит от химического состава, это чистая физика. Вязкость напрямую зависит от температуры масла и от давления.

Демонстрация текучести масла на компараторе вязкости

Оба этих фактора регулируются системами двигателя:

  • охлаждения;
  • вентиляции картера.

Абсолютное значение – динамическая вязкость. Более гибкая величина (зависит от нескольких факторов) – кинематическая. По традиционной системе СГС (сантиметр-грамм-секунда), измеряется вязкость в пуазах (динамика) и стоксах (кинематика). Существуют и другие единицы измерения.

Что такое вязкость масла?

Это достаточно сложное понятие. С теоретической точки зрения – это сопротивление течению жидкости (антипод текучести). С точки зрения практической физики – сопротивление формируется силой трения между частицами, из которых состоит масло.

Демонстрация зависимости вязкости масла от температуры

В первую очередь, от вязкости зависят смазывающие свойства моторного масла. Благодаря правильному балансу, смазка равномерно распределяется и удерживается на поверхности деталей. Снижается трение, механизмы меньше изнашиваются, на их движение тратится меньше энергии. Побочный эффект – экономия топлива.

Поскольку вязкость масла зависит от температуры и давления, необходимо придать химическому составу такие характеристики, которые позволят моторному маслу сохранять параметры при любых условиях эксплуатации.

Нельзя допускать, чтобы в пределах рабочей температуры двигателя, свойства технических жидкостей менялись. Для уточнения этого параметра, рядом с числовым значением вязкости так или иначе указывается условие, при котором производится измерение. Это информация для лаборантов. а не покупателей смазки.

Автопроизводители выставляют совершенно конкретные требования изготовителям смазочных материалов, особенно в плане вязкости. Поэтому, при подборе моторного масла, следует обращать внимание именно на этот параметр.

При использовании моторного масла с нарушениями заводских рекомендаций, вязкость либо не будет соответствовать температурным условиям, либо ее значение будет непредсказуемо меняться.

Это может привести к следующим неприятностям:

  1. Смазка загустеет и затруднится её перемещение по масляным каналам;
  2. Толщина рабочей пленки не будет соответствовать требованиям мотористов-изготовителей;
  3. Масло не удержится в рабочей зоне, металл останется «голым».

В результате возникнет масляное голодание, и эффект сухого трения. Детали будут перегреваться и ускоренно изнашиваться, что неминуемо приведет к поломке двигателя.

Последствия масляного голодания двигателя

Кинематическая, динамическая и относительная вязкость моторного масла

Базовый (абсолютный) параметр – это динамическая вязкость масла. Если нанести на поверхность с тарированной гладкостью, масляное пятно площадью 1 см², то для движения его со скоростью 1 см/с потребуется определенное усилие. По отношению этой силы к площади пятня – определяется динамическая вязкость. Эту величину обычно рассчитывают под различные значения температуры. Измеряется в миллипаскалях, разделенных на время в секундах: мПа/с.

Кинематическая вязкость масла связана с его плотностью, и непосредственно зависит от температуры механизма , в котором применяется смазка. Поскольку сертификационные измерения производятся в диапазоне рабочих температур двигателя (от +40°С до + 100°С), это и есть главный эксплуатационный показатель моторного масла. Максимальное допустимое значение температуры: + 150°С.

Параметр непосредственно связан со значением динамической вязкости, и представляет собой её соотношение к плотности жидкости. Разумеется, измерение проводится в одинаковых температурных условиях для абсолютной вязкости и плотности. Единица измерения – квадратный метр за секунду: м²/с.

Относительная вязкость моторного масла – это число, определяющее разность превышения над вязкостью дистиллированной воды . Оба измерения также производятся при одинаковой температуре: +20°С. Единица измерения вязкости масла – градус Энглера (E°). Этот способ измерения вспомогательный, на его основе не определяется . Но без этой процедуры (результаты обязательно отражаются в протоколах) невозможно получить заводской допуск для конкретной марки автомобилей.

Международный стандарт вязкости масел и виды смазок

Разумеется, маркировка на емкостях со смазочными материалами, не подразумевает наличие формул и единиц измерения из учебника физики. Обозначение упрощенное и формализованное.

Типовые значения степеней вязкости по SAE приняты давно, между всеми производителями смазочных материалов и автомобильными концернами достигнуты соглашения. Стандарт действует на всех континентах, его можно найти на упаковке любого бренда.

Способ определения вязкости нефтепродуктов — видео

Методика определения вязкости постоянно совершенствуется. Сегодня применяется редакция SAE J300, по которой все смазочные материалы (для моторов) подразделяются на 11 групп (классов). При этом, предыдущие редакции имеют обратную совместимость с новыми.

Классификация по сезонам применения:

  1. Для зимней эксплуатации применяется маркировка определения низкотемпературной вязкости W: (SAE 0W, 5W, 10W, 15W, 20W, 25W).
  2. Летние моторные масла обозначаются так: (SАЕ 20, 30, 40, 50, 60).

Поскольку нахождение автомобилей в строго определенных условиях встречается не часто, в основном применяются так называемые всесезонные моторные масла (могут быть минеральными, синтетическими, или полусинтетическими). В зависимости от условий эксплуатации, применяется комбинированная маркировка: SАЕ 0W-30, SAE 15W-40, SAE 20W-50 и пр.
Примерный перечень зависимости классификации от температуры показан в таблице:


Для нормальной работы двигателя, кинематическая вязкость моторного масла определяется двумя значениями. Первая цифра означает принадлежность к условиям зимней эксплуатации двигателя.

Правильно подобранная смазка должна обеспечить холодный запуск движка при заданной температуре. То есть, те самые показатели скорости течения масла, которые определяются в лабораториях при различных температурах, применяются на практике. Если залить жидкость с неправильным значением по SAE, коленчатый вал может просто не провернуться при вполне нормальной температуре -25°С.

Если же показатель вязкости для летней эксплуатации (вторая цифра) не будет соответствовать температуре окружающей среды, масляное пятно не удержится в зоне контакта движущихся деталей, и мы получим эффект «сухого трения».

А в самом критическом случае – смазка может дойти до точки кипения. Тогда характеристики быстро деградируют, и вместо технологичной технической жидкости в картере будет смесь отдельных фракций. Тут и до капитального ремонта недалеко.

Методики измерения кинетической вязкости масла

  1. Низкотемпературная вязкость – способность прокачиваться через систему маслопроводов после запуска двигателя. Определяется по универсальным (для всех участников SAE классификации) методике ASTM D 4684 и ASTM D 5293. В стендовых условиях имитируется холодный пуск мотора и прогон технической жидкости по тарированным трубкам. Можно использовать ротационный вискозиметр, но в нем не учитываются силы поверхностного натяжения. При этом определяется минимально возможная температура, при которой сохраняются заявленные показатели вязкости. Кроме того, проверяется способность жидкости уверенно проходить через масляный фильтр. Силы давления насоса вполне достаточно, чтобы порвать загустевшим маслом мембрану. Методика проверки принята стандартом GM 9099 P.
  2. Высокотемпературная вязкость оценивается на образцах из той-же партии. Кинематические характеристики проверяются с помощью капиллярного вискозиметра при типичной температуре прогретого двигателя: 100°С. Методика имеет название ASTM D 445. Затем жидкость прогревается до температуры 150°С. Это пиковые значения, когда масло касается раскаленной нижней части поршня. В этом диапазоне скорость сдвига (один из показателей кинематической вязкости) не должен выходить за установленный стандарт. Верхний предел оценивается по методике ASTM D 4683 или ASTM D 4741.

Существует еще оценка стабильности к сдвигу при одновременном воздействии температуры и механики. Проверка производится на специальной тарированной форсунке, в течение 10 симулированных рабочих часа.

Кроме того, для полного соответствия допуску, любой автопроизводитель может предложить собственный тест, который моделирует температурные и нагрузочные ситуации, характерные для конкретного двигателя.

И если производитель смазки хочет получить дополнительный сертификат, он вынужден проходить все испытания. Это влечет за собой определенные затраты, зато открывает дорогу к новым рынкам и потребителям.

Наиболее успешные тесты учитываются при выборе ОЕМ поставщика расходных материалов.

Заключение

При выборе смазки не обязательно помнить (или иметь под рукой) все перечисленные в материале формулы или методики. Достаточно прочитать на этикетке заводские данные вязкости по стандарту SAE, и найти в перечне допусков ваш автомобиль. Под этими комбинациями символов и цифр, скрываются многостраничные отчеты о проведенных испытаниях.

Как выбрать масло ориентируясь на его вязкость — видео

Идеальный вариант подбора масла – выяснить, с какой торговой маркой заключено ОЕМ соглашение на поставку расходных материалов у вашего автопроизводителя. В этом случае вы точно будете уверены, что кинематическая вязкость моторного масла соответствует вашему мотору.

Для определения кинематической вязкости вискозиметр подбирают таким образом, чтобы время течения нефтепродукта было не менее 200 с. Затем его тщательно промывают и высушивают. Пробу испытуемого продукта профильтровывают через бумажный фильтр. Вязкие продукты перед фильтрованием подогревают до 50–100оС. При наличии в продукте воды его осушают сульфатом натрия или крупнокристаллической поваренной солью с последующим фильтрованием. В термостатирующем устройстве устанавливают требуемую температуру. Точность поддержания выбранной температуры имеет большое значение, поэтому термометр термостата должен быть установлен так, чтобы его резервуар оказался примерно на уровне середины капилляра вискозиметра с одновременным погружением всей шкалы. В противном случае вводится поправка на выступающий столбик ртути по формуле:

^T = Bh(T1 – T2)

  • B – коэффициент температурного расширения рабочей жидкости термометра:
    • для ртутного термометра – 0,00016
    • для спиртового – 0,001
  • h – высота выступающего столбика рабочей жидкости термометра, выраженная в делениях шкалы термометра
  • T1 – заданная температура в термостате, оС
  • T2 – температура окружающего воздуха вблизи середины выступающего столбика, оС.

Определение времени истечения повторяют несколько раз. В соответствии с ГОСТ 33-82 число измерений устанавливают в зависимости от времени истечения: пять измерений – при времени истечения от 200 до 300 с; четыре – от 300 до 600 с и три – при времени истечения свыше 600 с. При проведении отсчетов необходимо следить за постоянством температуры и отсутствием пузырьков воздуха.
Для подсчета вязкости определяют среднее арифметическое значение времени истечения. При этом учитывают только те отсчеты, которые отличаются не более чем на ± 0,3 % при точных и на ± 0,5 % при технических измерениях от среднего арифметического.

В промышленности, научной деятельности часто необходимо вычислить коэффициент вязкости жидкости. Работа с обычными или дисперсными средами в виде аэрозолей, газовых эмульсий требует знаний о физических свойствах этих веществ.

Что такое вязкость жидкости?

Еще Ньютон положил начало такой науке, как реология. Эта отрасль занимается изучением сопротивления вещества при движении, т. е. вязкости.

В жидкостях и газах происходит непрерывное взаимодействие молекул. Они ударяются друг о друга, отталкиваются или просто пролетают мимо. В итоге слои вещества как бы взаимодействуют друг с другом, придавая скорость каждому из них. Явление подобного взаимодействия молекул жидкостей/газов и называется вязкостью, или внутренним трением.

Чтобы лучше рассмотреть этот процесс, необходимо продемонстрировать опыт с двумя пластинками, между которыми находится жидкая среда. Если двигать верхнюю пластинку, то «прилипший» к ней слой жидкости также начнет двигаться с определенной скоростью v1. Через короткий промежуток времени замечаем, что нижележащие слои жидкости также начинают двигаться по той же траектории со скоростью v2, v3…vn и т. д., причем v1>v2, v3…vn. Скорость самого нижнего из них остается равна нулю.

На примере газа такой опыт провести практически невозможно, т. к. силы взаимодействия молекул друг с другом очень малы, и визуально это зарегистрировать не удастся. Здесь тоже говорят о слоях, о скорости движения этих слоев, поэтому в газообразных средах также существует вязкость.

Ньютоновские и неньютоновские среды

Ньютоновская жидкость - это такая жидкость, вязкость которой можно высчитать с помощью формулы Ньютона.

К таким средам относятся вода и растворы. Коэффициент вязкости жидкости в таких средах может зависеть от таких факторов, как температура, давление или строение атома вещества, однако градиент скорости всегда останется неизменным.

Неньютоновские жидкости - это такие среды, в которых упомянутое выше значение может изменяться, а значит, формула Ньютона здесь действовать не будет. К таким веществам относятся все дисперсные среды (эмульсии, аэрозоли, суспензии). Сюда же относится и кровь. Об этом более подробно поговорим далее.

Кровь как внутренняя среда организма

Как известно, 80 % крови составляет плазма, которая имеет жидкое агрегатное состояние, а остальные 20 % - это эритроциты, тромбоциты, лейкоциты и различные включения. Эритроциты человека имеют диаметр 8 нм. В неподвижном состоянии они формируют агрегаты в виде монетных столбиков, при этом существенно повышают вязкость жидкости. Если ток крови активен, эти «конструкции» распадаются, а внутреннее трение, соответственно, уменьшается.

Коэффициенты вязкости среды

Взаимодействие слоев среды друг на друга сказывается на характеристиках всей системы жидкости или газа. Вязкость - это один из примеров такого физического явления, как трение. Благодаря ей верхние и нижние слои среды постепенно выравнивают скорости своего тока, и в конечном итоге она приравнивается к нулю. Также вязкость можно характеризовать как сопротивление одного слоя среды другому.

Для описания таких явлений выделяют две качественные характеристики внутреннего трения:

  • динамический коэффициент вязкости (динамическая вязкость жидкости);
  • кинетический коэффициент вязкости (кинетическая вязкость).

Обе величины связаны уравнением υ = η / ρ, где ρ - плотность среды, υ - кинетическая вязкость, а η - динамическая вязкость.

Методы определения вязкости жидкости

Вискозиметрия - это измерение вязкости. На современном этапе развития науки найти значение вязкости жидкости практическим путем можно четырьмя способами:

1. Капиллярный метод. Для его проведения необходимо иметь два сосуда, соединенных стеклянным каналом небольшого диаметра известной длины. Также нужно знать значения давления в одном сосуде и в другом. Жидкость помещается в стеклянный канал, и за определенный промежуток времени она перетекает из одной колбы в другую.

Дальнейшие подсчеты производятся с помощью формулы Пуазейля для нахождения значения коэффициента вязкости жидкости.

На практике жидкие среды могут представлять собой раскаленные до 200-300 градусов смеси. Обычная стеклянная трубка в таких условиях просто бы деформировалась или даже лопнула, что недопустимо. Современные капиллярные вискозиметры собраны из качественного и стойкого материала, который легко переживает такие нагрузки.

2. Медицинский метод по Гессе. Чтобы рассчитать вязкость жидкости таким способом, необходимо иметь не одну, а две идентичные капиллярные установки. В одну из них помещают среду с заранее известным значением внутреннего трения, а в другую - исследуемую жидкость. Далее измеряют два значения времени и составляют пропорцию, по которой выходят на нужное число.

3. Ротационный метод. Для его проведения необходимо иметь конструкцию из двух соосных цилиндров. Это значит, что один из них должен быть внутри другого. В промежуток между ними заливают жидкость, а затем придают скорость внутреннему цилиндру. Эта угловая скорость также сообщается жидкости. Разница в силе момента позволяет вычислить вязкость среды.

4. Определение вязкости жидкости методом Стокса. Для проведения этого опыта необходимо иметь вискозиметр Гепплера, который представляет собой цилиндр, заполненный жидкостью. Перед началом эксперимента делают две пометки на цилиндре и измеряют длину между ними. Затем берут шарик определенного радиуса R и опускают его в жидкую среду. Чтобы определить скорость его падения, находят время передвижения объекта от одной метки до другой. Зная скорость движения шарика, можно вычислить вязкость жидкости.

Практическое применение вискозиметрам

Определение вязкости жидкости имеет большое практическое значение в нефтеперерабатывающей промышленности. При работе с многофазными, дисперсными средами важно знать их физические свойства, особенно внутреннее трение. Современные вискозиметры сделаны из прочных материалов, при их производстве задействуются передовые технологии. Все это в совокупности позволяет работать с высокой температурой и давлением без вреда для самого оборудования.

Вязкость жидкости играет большую роль в промышленности, потому что транспортировка, переработка и добыча, например, нефти зависят от значений внутреннего трения жидкостной смеси.

Какую роль играет вязкость в медицинском оборудовании?

Поступление газовой смеси через эндотрахеальную трубку зависит от внутреннего трения этого газа. Изменение значений вязкости среды здесь по-разному отражается на проникновении воздуха через аппарат и зависит от состава газовой смеси.

Введение лекарственных препаратов, вакцин через шприц тоже является ярким примером действия вязкости среды. Речь идет о перепадах давления на конце иголки при впрыскивании жидкости, хотя изначально полагали, что этим физическим явлением можно пренебречь. Возникновение высокого давления на наконечнике - это результат действия внутреннего трения.

Заключение

Вязкость среды - это одна из физических величин, которая имеет большое практическое применение. В лаборатории, промышленности, медицине - во всех этих сферах понятие внутреннего трения фигурирует очень часто. Работа простейшего лабораторного оборудования может зависеть от степени вязкости среды, которая используется для исследований. Даже перерабатывающая промышленность не обходится без знаний в области физики.