Фораминиферы являются представителями. Подкласс Foraminifera

Общая характеристика. К подклассу фораминифер (лат. foramen, род. foraminis - отверстие, дыра, fero - носить) относится большая группа саркодовых, насчитывающих до 20 000 современных и ископаемых видов, цитоплазма которых заключена в органическую, агглютинированную или известковую раковину. Псевдоподии фораминифер состоят из тонких, разветвленных, корневидных, соединяющихся между собой (анастомозирующих) нитей, выходящих из раковины либо только через устье, либо через устье и каналы, пронизывающие стенку раковины. Фораминиферы в большинстве своем морские бентосные или планктонные, свободноживущие или прикрепленные формы. Небольшая часть фораминифер приспособилась к жизни в солоноватоводных бассейнах и лишь немногие известны в пресных водоемах. В ископаемом состоянии известны начиная с кембрия.

Строение тела. Цитоплазма фораминифер обычно бесцветная, иногда окрашена в розовый, оранжевый или желтый цвета. Эктоплазма, довольно однородная по структуре, осуществляет обмен веществ с внешней средой и служит местом образования псевдоподий. Под электронным микроскопом псевдоподии представляют собой пучок волоконец разного диаметра; каждое волоконце окружено оболочкой. Способность псевдоподий вытягиваться и втягиваться основана на свойстве цитоплазмы изменять свое агрегатное состояние, переходя из жидкого состояния (золь) в вязкое (гель). Псевдоподии, не связанные с субстратом, разветвляются, соединяются перемычками и образуют своеобразную ловчую сеть, в которую попадают личинки, различные микроорганизмы и органический детрит (рис. 26). Переваривание пищи нередко происходит вне раковины.

Строение раковины. Подавляющее число фораминифер имеет раковину, и лишь у небольшой части цитоплазма окружена утолщенной эластичной органической оболочкой - мембраной. Раковина может быть относительно простой или достигать большой сложности (рис. 27). Ее размеры колеблются от 0,02 до 110-120 мм. Стенка раковины может быть органической, агглютинированной и известковой. Наиболее низкоорганизованные фораминиферы (аллогромииды) имеют стенку, состоящую из тектина, представляющего комбинацию протеинов и углеводов. У многих фораминифер в тектиновую стенку включены посторонние частицы разного минерального и химического состава: зерна кварца, различных тяжелых минералов, карбонатов, пластинки слюды, спикулы губок, органический детрит (обломки спикул губок, раковинки иных фораминифер, скелеты радиолярий, обломки раковин моллюсков) и другой "строительный материал".

При этом фораминиферы обычно так же, как и раковинные амебы, "заглатывают" во внутрь этот "строительный материал". Через некоторое время протоплазма разбухает и "строительный материал" выталкивается на поверхность, где цементируется тектином, карбонатом кальция, окислами или карбонатом железа.

Таким образом, возникают агглютинированные раковины.

Раньше предполагалось, что в редких случаях цементом у некоторых фораминифер мог быть кремнезем. Однако у современных фораминифер наличие кремневого цемента пока не установлено. Многие исследователи считают, что наблюдаемый у ряда ископаемых фораминифер кремневый скелет является вторичным и развился в процессе фоссилизации по карбонату кальция. Неясным остается также вопрос, откуда берется железистый цемент, обладают ли фораминиферы способностью выделять железо из цитоплазмы или оно привносится извне в виде обломков железистых минералов. Цитоплазма некоторых фораминифер обладает своеобразной избирательной способностью - для постройки скелета она "выбирает" материал только определенного размера, цвета и даже состава, например только зерна кварца или спикулы кремневых губок, или листочки слюды. Но чаще всего используется всякий подходящий обломочный материал, рассеянный на дне водоема. Цемент и агглютинированные частицы входят в состав раковины в разной пропорции: у одних форм частицы плотно прилегают друг к другу, у других они разделены участками цемента, иногда цемент полностью преобладает. Микроструктура стенки агглютинирующих фораминифер изучена недостаточно. У многих имеется внутренняя органическая выстилка.

Большинство фораминифер имеет секреционную известковую раковину, стенка которой состоит из тектиновой основы, пропитанной минеральными солями; важную роль здесь играет углекислый кальций (кальцит или арагонит) с различным количеством примеси углекислого магния (до 18%) и фосфата кальция и магния. Стенка известковых раковин по своему строению довольно разнообразна. Существует три основных типа микроструктур стенки: микрогранулярный, фарфоровидный и гиалиновый (стекловидный). В последнее время выделен еще криптокристаллический. Употребляемые названия "фарфоровидный" и "стекловидный" не очень подходящие, так как они отражают не специфику самой микроструктуры, а общий облик стенки, но эти названия общеприняты и пока существуют в литературе.

Микрогранулярный тип стенки наблюдается у палеозойских эндотирид, фузулинид и у некоторых мезокайнозойских отрядов; он характеризуется наличием зерен микрозернистого кальцита размером от 1 до 5 мк, отсутствием цемента и непостоянной примесью агглютинированных частиц. Раковина с таким типом микроструктуры стенки не имеет скульптуры, дополнительных скелетных образований; внутренний скелет представлен в виде выростов стенки. Поверхность раковины тусклая, светлого или серовато-желтого цвета.

Фарфоровидный тип стенки отличается беспорядочным расположением кристаллов и их кристаллографических осей; кристаллы имеют различную форму, их размеры от 0,5 до 5 мк. В отраженном свете стенка белая, фарфоровидная, иногда блестящая. Стенка раковины содержит органическую основу. Этот тип стенки характерен для отряда милиолид.

Стекловидный, или гиалиновый, тип разделяется на два подтипа: стекловато-зернистый и стекловато-радиальный. У первого подтипа кристаллы кальцита или арагонита однообразной округлой или угловатой формы, плотно прилегают друг к другу; размеры кристаллов 0,5-10 мк; оптические оси ориентированы беспорядочно или с преобладанием определенной ориентировки с осью С под углом к поверхности стенки. У стекловато-радиального подтипа кристаллы кальцита или арагонита сильно удлиненные, расположены в основном перпендикулярно к поверхности стенки; так же расположена оптическая ось С.

Криптокристаллический тип микроструктуры стенки характерен для палеозойских фораминифер; стенка состоит из кристаллов кальцита с нечеткими границами.

Нередко в процессе фоссилизации секреционных известковых раковин возникают вторичные микроструктуры, связанные с процессами перекристаллизации. В одних случаях происходит укрупнение кристаллов, в других - распадение удлиненных кристаллов на мелкие субизометрические зерна.

Макроструктуру стенки раковины образуют морфологически обособленные слои, внутрикамерные выстилки, вторичные слои на внешней поверхности раковины и на поверхности септ.

Первичная стенка раковины может быть однослойной либо состоящей из двух или нескольких слоев. Первично-однослойные стенки развиты преимущественно у представителей с фарфоровидной микроструктурой, а также у многих агглютинированных и тектиновых раковин. У фораминифер со стекловидной и с микрогранулярной структурой развиты как однослойные, так и многослойные стенки; у многослойной стенки отдельные слои разделены тонкими прослоями органического вещества; слои, слагающие стенки, обычно отличаются друг от друга особенностями строения. Для некоторых групп (фузулиниды) эти слои имеют специальные названия: первичная стенка называется протекой; она состоит из наружного тонкого слоя - тектума и основного внутреннего слоя, носящего, различные названия. У швагерин он имеет ячеистое строение и назван кериотекой (см. рис. 39). У стекловатых многослойных раковин трехслойную первичную стенку предложено называть биламеллярной, поскольку первично в ней различали внутренний и наружный (или основной) слои.

Стенка раковины изнутри бывает выстлана тонкой органической пленкой. На внешней поверхности раковины и на внутренних оборотах развиты вторичные слои стенок раковины; они образуются после формирования новой камеры в виде последующих наслоений на наружной или внутренней стороне ранее образовавшейся стенки (их называют иногда слоями нарастания, или утолщения, или вторично-многослойными).

В простейшем случае при образовании новой камеры вся открытая часть раковины перекрывается новым раковинным веществом и ее старая часть значительно утолщается (рис. 28), в то время как вновь образованная септа и все предшествующие септы остаются однослойными (рис. 28, 1); такой тип строения наблюдается у нодозариид, булиминид и простейших семейств роталиид. Во втором случае при образовании новой камеры раковинное вещество перекрывает всю открытую часть раковины и налегает на предшествующую септу таким образом, что она становится двойной, а вновь образованная апертурная септа остается однослойной (рис. 28, 3). У подобных двойных септ в полостях, остающихся между двумя слоями, развивается система септальных каналов. Такой тип двойных септ с системой внутрисептальных каналов характерен для отряда роталиид и получил название роталоидных септ. В третьем случае вновь образованная камера с конечной апертурной септой является первично-двойной и по способу образования напоминает первый случай (рис. 28, 2). Подобные двойные септы, также снабженные системой каналов, характерны для раковин некоторых групп отрядов булиминид и нуммулитид (орбитоиды).

Пористость стенки. У многих фораминифер наблюдается пористая стенка. Поры могут быть простыми и сложными. Простые поры представлены цилиндрическими канальцами диаметром 0,2-0,5 мк; сложные поры характеризуются объединением мелких поровых канальцев в более крупные (кериотекальная пористость у фузулинид).

У некоторых мезокайнозойских фораминифер наблюдается альвеолярное строение стенки, образованной различными выростами, составляющими дополнительные внутрикамерные скелетные образования. Все поровые каналы обычно покрыты органической выстилкой. Форма и частота пор на раковине в последние годы интенсивно изучаются с применением электронного сканирующего микроскопа.

Форма раковины. Раковина фораминифер может быть одно-, двух- и многокамерной (рис. 29). При непрерывном росте образуется раковина, не разделенная на камеры; такая раковина называется однокамерной. В простейшем случае однокамерная раковина имеет форму шара или колбы, с одним устьем (Saccammina, Lagena) или с несколькими отверстиями (Astrorhiza). Она может быть агглютинированной или известковой. При усиленном нарастании вдоль устьевого края возникает раковина в форме трубки, открытой с одной стороны или с обеих.


Рис. 29. Схема строения раковин фораминифер: 1 - однокамерная; 2 - двухкамерная; 3-5 - многокамерные: 3 - однорядная, 4 - спирально-плоскостная: 4а - сбоку, 4б - со стороны устья, 5 - спирально-коническая: 5а - с дорзальной стороны, 5б - со стороны устья, 5в - с вентральной стороны; АА - ось навивания, Д 1 - большой диаметр, Д 2 - малый диаметр, к - кнль, рр - плоскость симметрии, с - септальные швы, сп - септальная поверхность, сш - спиральный шов, Т - толщина раковины, у - устье

Двухкамерные раковины состоят из шаровидной начальной камеры и второй, длинной, неразделенной, трубчатой, отделенной от первой одной перегородкой. Вторая камера может быть прямой или разветвленной, или завитой в неправильную клубковидную, плоскую или коническую спираль.

Раковина, у которой внутренняя полость разделена перегородками, или септами, на камеры, называется многокамерной (рис. 29, 3-5). Возникновение многокамерности связано с изменением характера роста цитоплазмы и раковины. Рост из постоянного становится периодическим, причем периоды усиленного роста отделяются Друг от друга периодами покоя. Каждому периоду роста отвечает образование новой камеры, которая, как правило, бывает больше предыдущей; форма и расположение новой камеры и апертурной септы, отделяющей вновь образованную камеру от внешней среды, зависят от физико-химических свойств цитоплазмы, от величины краевых углов, образуемых расходящимися псевдоподиями со стенками предшествующей камеры, и от характера поверхности последней. Возникновение периодичности роста имело большое значение в развитии фораминифер, так как освобождало, их от необходимости непрерывно строить раковину. Следы такой периодичности можно уже наблюдать на некоторых одно- и двухкамерных трубчатых раковинах, несущих легкие пережимы.

Наиболее простой формой многокамерной раковины можно считать одноосную или однорядную, когда каждая последующая камера, имея форму шара как наиболее выгодную, обладающую наибольшим объемом при наименьшей поверхности, наращивается над предыдущей. Но у таких однорядных форм довольно велика опасность излома, особенно в местах пережимов, поэтому совершенствование формы приводит к тому, что новая камера охватывает своей основной частью часть предыдущей камеры, как бы надвигаясь на нее.

Другим способом укрепления раковины служит ее закручивание в спираль. Наиболее примитивным типом будет неправильно-клубковидный, при котором обороты навиваются беспорядочно в нескольких направлениях. При упорядочивании такого навивания возникают плектогирные раковины или раковины милиолинового типа. В первом случае ось навивания последующего оборота отклоняется, на некоторый угол от положения оси предыдущего оборота. Во втором случае камеры образуют спирально-свернутый клубок, располагаясь в нескольких взаимно пересекающихся плоскостях. Это объясняется тем, что направление оси навивания изменяется с ростом раковины на определенный угол. Длина каждой камеры составляет обычно половину оборота. У одних форм камеры отстоят друг от друга на 144° и располагаются в пяти плоскостях (Quinqueloculina), пересекающихся под углом 72° (см. рис. 42), у других камеры расположены в трех плоскостях (Triloculina), взаимно пересекающихся под углом 120°, и, наконец, у третьих, каждая камера расположена от предшествующей на 180° (Pyrgo, или Biloculina).

Спирально-плоскостной тип рассматривается как видоизмененный одноосный, у которого главная ось спирально завивается в одной плоскости. Линии соприкосновения смежных оборотов спирали раковины называются спиральными швами. Воображаемая прямая линия, вокруг которой происходит навивание оборотов раковины, носит название оси навивания. По оси навивания у спирально-плоскостных измеряется толщина раковины. Перпендикулярно к оси навивания через начальную камеру проводится диаметр, раковины. Сечение раковины перпендикулярное диаметру является экваториальным. С экваториальным сечением совпадает плоскость симметрии. Форма спирально-плоскостных раковин разнообразна и зависит от диаметра и толщины (см. рис. 41, 3). При диаметре, значительно превышающем толщину, раковина имеет дисковидную или чечевицеобразную форму. При диаметре, почти равном толщине, раковина приобретает шаровидную форму. При толщине, значительно превышающей диаметр, возникает веретеновидная форма. Если при рассмотрении спиральной раковины сбоку видны все обороты, она называется эволютной (см. рис. 35, 1), Если последний оборот охватывает все предыдущие обороты, то раковина называется инволютной (см. рис. 48, 5). Между этими двумя крайними типами строения имеется большое число форм, занимающих промежуточное положение (полуэволютные и полуинволютные).

Степень возрастания оборотов бывает различна. У большинства спирально-плоскостных раковин возрастание оборотов происходит постепенно, но у некоторых форм обороты возрастают очень быстро и раковина приобретает вид "рога изобилия" или даже становится веерообразной. Иногда быстрое возрастание оборотов может приводить к смыканию противоположных концов веера и к возникновению циклического типа раковины. У циклических раковин камеры расположены по концентрическим окружностям в одной плоскости (см. рис. 49).

При спирально-коническом типе (роталиевый) камеры располагаются по улитковидной, или трохоидной, спирали (рис. 29, 5). Сторону, отвечающую основанию конуса, где виден обычно только последний оборот, принято называть вентральной, или брюшной. Сторона, отвечающая вершине конуса, где видны все обороты, называется дорсальной, или спинной. Спиральный шов отделяет друг от друга спиральные обороты.

Спирально-винтовой тип раковин отличается тем, что высота нарастания камер происходит по высокой спирали, которая значительно превосходит диаметр основания (см. рис. 37). Обычно у таких раковин спиральное расположение камер выглядит как двух-, трех- или многорядное расположение камер и поэтому для них чаще употребляются названия двухрядные, трехрядные или многорядные раковины. У прикрепленных фораминифер раковина приобретает древовидную или неправильно разветвленную форму (см. рис. 34, 4).

Форма камер отличается большим разнообразием. Различают камеры: шаровидные, овальные, трубчатые, циклические, радиально удлиненные, угловатые (конические, ромбовидные, усеченно-конические), валикообразные.

Однако рассмотренными выше основными типами строения раковин не исчерпывается все многообразие их форм.

Гетероморфизм. Нередко в процессе индивидуального развития (онтогенеза) происходит изменение типа строения раковины, что приводит ее к гетероморфному строению. Например, начальная раковина может быть спирально-плоскостной, следующий отдел может состоять из двух редко расположенных камер и конечный отдел может быть однорядным. Такая раковина называется триморфной. Если раковина сочетает всего два типа строения, то она биморфна (см. рис. 37, 2б, в), и, наконец, если она однотипна по своему строению, то ее называют мономорфной. Наиболее резко гетероморфное строение раковины бывает выражено у микросферических особей (шизонтов).

Апертура, или устье. Отверстие, при помощи которого цитоплазма сообщается с внешней средой, расположенное в конце однокамерной или в последней септе многокамерной раковины, носит название устья, или апертуры. Последняя септа образует септальную, или устьевую, поверхность. При образовании новой камеры устье предыдущей камеры становится отверстием, соединяющим соседние камеры. Это отверстие называется фораменом (отверстие, дыра); отсюда весь подкласс получил название фораминиферы. Устье (рис. 30) расположено в центре, эксцентрично или в основании апертурной перегородки; оно может быть простым, т. е. состоять из одного отверстия разнообразной формы: округлой, овальной, щелевидной, крестообразной, ветвистой, радиально-лучистой. Сложное устье состоит из нескольких отверстий. Наиболее распространенным типом сложного устья является ситовидное устье, состоящее из многочисленных мелких отверстий. У многих фораминифер строение устья осложняется дополнительными образованиями, к числу которых относятся особые выросты, называемые зубными пластинками, или зубами. Они имеют важное таксономическое значение и служат, по-видимому, для укрепления края раковины и прикрепления пучка выходящих псевдоподий.

Кроме основного устья для выхода эктоплазмы наружу служат различные отверстия, имеющиеся в раковине. К их числу относятся тонкие каналы, пронизывающие стенку некоторых агглютинированных и известковистых микрозернистых и радиально-лучистых раковин; дополнительные устья расположены в разных местах: вдоль периферического края, вдоль шва и т. д.

Система каналов. У наиболее высоко организованных фораминифер (роталииды, нуммулитиды) имеется система каналов внутри раковины (рис. 31). Основными элементами этой системы являются спиральный и межсептальный каналы. Спиральный канал связан с брюшной лопастью каждой из камер; от него отходят межсептальные каналы, расположенные в полостях двойных септ и открывающиеся тонкими порами в швах. У некоторых роталиид система каналов очень сложна: наблюдается не один, а два спиральных канала, от которых отходят пупочные и межсептальные каналы.


Рис. 31. Система каналов у роталиид: 1а - вид с вентральной стороны; 1б - внутренний слепок по продольному сечению; вк - внутрисептальный канал, к - камеры, ск - спиральный канал, у - устье, у" - устье спирального канала

Дополнительный скелет. К дополнительному скелету относятся те образования, которые усложняют строение раковины и септ. Они могут быть внутренними и наружными. К внутренним образованиям относятся известковые отложения, расположенные у эндотирид и фузулинид по краям экваториального устья (хоматы) или по бокам дополнительных устьев (парахоматы), или прерывисто только около септ (псевдохоматы). К ним относятся также столбики конической формы нуммулитид, пронизывающие раковину. На поверхности оборотов они имеют вид бугорков - гранул и служат для укрепления раковины.

К числу наружных дополнительных скелетных образований относятся различные скульптурные элементы в виде ребрышек, ячеек, килей, бугорков, игл, шипов и различных выростов на раковине.

У некоторых фораминифер, имеющих спиральную раковину, пупочная область бывает закрыта своеобразной втулкой или диском, состоящим из стекловатого кальцита; нередко этот диск бывает пронизан канальцами, связанными с внутренней системой каналов. У многих раковин планктонных фораминифер имеются тонкие длинные иглы, значительно увеличивающие их общую поверхность и облегчающие парение в толще воды.

Размножение и развитие. У фораминифер наблюдается сложный жизненный цикл развития (рис. 32), сопровождаемый чередованием бесполого и полового поколений. При половом размножении на каком-то этапе развития у особи, достигшей взрослого состояния, ядро делится на огромное число (тысячи) частиц, вокруг которых обособляется небольшая частица цитоплазмы. Таким путем возникают одноядерные клетки, снабженные двумя жгутами. Это половые клетки, или гаметы. По своему строению они совершенно одинаковы и благодаря жгутикам обладают подвижностью. После слияния двух гамет (оплодотворение), обычно происходящих от разных особей, возникает оплодотворенная клетка - зигота, имеющая диплоидный набор хромосом. Вокруг зиготы выделяется первая (эмбриональная) известковая камера. От нее, у многокамерных фораминифер, образуется вторая, третья и т. д. камеры. Зигота дает начало микросферическому поколению, или шизонту. Шизонт (форма В) сравнительно долгое время остается одноядерным, но с диплоидным набором хромосом. Затем на каком-то этапе роста происходит редукционное деление и ядро становится гаплоидным (с одинарным набором хромосом). При достижении шизонтом взрослого состояния ядро делится последовательно несколько раз и шизонт временно становится многоядерным; образуются десятки, а иногда свыше сотни маленьких ядер, вокруг которых обособляется цитоплазма. В этом случае возникают так называемые "эмбрионы", или амебовидные зародыши. Вокруг каждого "эмбриона" образуется довольно крупная эмбриональная камера. "Эмбрионы" покидают материнскую раковину и переходят к самостоятельному существованию. Этот процесс представляет собой бесполое размножение. Возникшие особи постепенно растут, строят новые камеры и дают макросферическое поколение, получившее название гамонтов (форма А).


Рис. 32. Схема чередования поколений у фораминифер: а - микросферическая форма (шизонт В) с дочерними "эмбрионами"; б, б" - мегасферические формы (гамонты А 1 , А 2); г - гамета с гаплоидным (п) набором хромосом, з - зигота с диплоидным (2п) набором хромосом, рр - редукционное деление, э - дочерние "эмбрионы"

Изучение онтогенеза фораминифер показало, что обычно наблюдается закономерное чередование гамонтов и шизонтов. Но иногда это закономерное чередование нарушается, за одним шизонтом (форма В) следует два поколения гамонтов (формы А 1 , А 2). В одних случаях гамонты почти не отличимы или несколько отличаются по размерам, - в других - гамонты крупнее шизонтов и обладают большим числом камер, в третьих - гамонты и шизонты отличаются по размерам начальных камер. У макросферических особей начальная камера обычно крупных размеров, раковина сравнительно небольшая и число камер меньше, чем у микросферических особей. Последние отличаются маленькими размерами начальных камер, сравнительно большой раковиной и общим большим числом камер. Явление, связанное с образованием у фораминифер двух типов строения раковины, получило название диморфизма. Изучение диморфизма (или триморфизма) важно не только с точки зрения систематики, но и для изучения происхождения и родственных связей между фораминиферами. При этом более важное значение имеют особи, возникшие в результате полового процесса и более полно отражающие онтогенетическое развитие.

Основы систематики и классификации. Важное значение для систематики фораминифер имеют строение и состав стенки раковины, строение цитоплазмы и ядра, особенности чередования поколений и другие признаки. На этом основании Д. М. Раузер-Черноусова и А. В. Фурсенко (1959) выделили 13 отрядов. Американские исследователи А. Леблик и Е. Таппан (1964) предложили разделять отряд фораминифер на пять подотрядов. В соответствии с принятым в учебнике рангом фораминифер в качестве подкласса эти подотряды подняты до уровня надотрядов. Подкласс фораминифер на основании строения стенки раковины разделен на пять надотрядов: Allogromioidea, Textularioidea, Fusulinoidea, Miliolidoidea, Rotalioidea.

Размножение фораминифер происходит довольно сложно и у большинства видов связано с чередованием двух разных форм размножения и двух поколений. Одно из них бесполое, второе - половое. В настоящее время процессы эти изучены у многих видов фораминифер.

На рисунке изображен жизненный цикл фораминиферы Elphidium crispa.

Этот вид представляет собой типичную многокамерную фораминиферу со спирально закрученной раковинкой. Начнем рассмотрение цикла с многокамерной корненожки, обладающей маленькой зародышевой камерой в центре спирали (микросферическое поколение).

В цитоплазме корненожки первоначально имеется одно ядро. Бесполое размножение начинается с того, что ядро последовательно несколько раз делится, в результате чего образуется множество небольшого размера ядер (обычно несколько десятков, иногда свыше сотни).

Затем вокруг каждого ядра обособляется участок цитоплазмы и все протоплазматическое тело корненожки распадается на множество (по числу ядер) одноядерных амебообразных зародышей, которые выходят через устье наружу. Сразу же вокруг амебовидного зародыша выделяется тонкая известковая раковинка, которая и явится первой (эмбриональной) камерой будущей многокамерной раковины. Таким образом, при бесполом размножении на первых стадиях своего развития корненожка является однокамерной. Однако очень скоро к этой первой камере начинают добавляться следующие. Происходит это так: из устья сразу выступает наружу некоторое количество цитоплазмы, которая тотчас же выделяет раковинку. Затем наступает пауза, в течение которой простейшее усиленно питается и масса протоплазмы его увеличивается внутри раковины. Затем вновь часть цитоплазмы выступает из устья и вокруг нее образуется очередная известковая камера. Этот процесс повторяется несколько раз: возникают все новые и новые камеры, пока раковина не достигнет характерных для данного вида размеров.

Таким образом, развитие и рост раковины носит ступенчатый характер. Размеры и взаимное положение камер определяется тем, какое количество протоплазмы выступает из устья и как эта протоплазма располагается по отношению к предшествующим камерам.

Рис. 35. Жизненный цикл фораминиферы
Elphidium crispa: слева внизу - выход зародышей, образовавшихся в результате бесполого размножения; сверху-выход гамет и их копуляция.

Мы начали рассмотрение жизненного цикла Elphidium с раковинки, обладавшей очень маленькой эмбриональной камерой. В результате бесполого размножения получается раковинка, эмбриональная камера которой значительно крупнее, чем у той особи, которая приступала к бесполому размножению. В результате бесполого размножения получаются особи макросферического поколения, которые существенно отличаются от дающего им начало микросфериче85 ского поколения. В данном случае потомство оказывается не вполне похожим на родителей.

Каким же путем возникают особи микросферического поколения?

Они развиваются в результате полового размножения макросферического поколения. Происходит это следующим образом. Как и при бесполом размножении, половой процесс начинается с деления ядра. Количество образующихся при этом ядер значительно больше,чем при бесполом размножении. Вокруг каждого ядра обособляется небольшой участок цитоплазмы, и таким путем формируется огромное количество (тысячи) одноядерных клеток х. Каждая из них снабжена двумя жгутиками, благодаря движению которых клетки активно и быстро плавают. Эти клетки являются половыми клетками (гаметами). Они сливаются друг с другом попарно, причем слияние затрагивает не только цитоплазму, но и ядра. Этот процесс слияния гамет и есть половой процесс. Образующаяся в результате слияния гамет (оплодотворения) клетка носит название зиготы. Она дает начало новому микросферическому поколению фораминиферы. Вокруг зиготы сразу же по ее образовании выделяется известковая раковина - первая (эмбриональная) камера. Затем процесс развития и роста раковины, сопровождающийся увеличением числа камер, осуществляется по тому же типу, как и при бесполом размножении. Раковина получается микросферической потому, что размер зиготы, выделяющей эмбриональную камеру, во много раз меньше одноядерных амебовидных зародышей, образующихся при бесполом размножении. В дальнейшем микросферическое поколение приступит к бесполому размножению и вновь даст начало макросферическим формам.

На примере жизненного цикла фораминифер мы встречаемся с интересным биологическим явлением закономерного. У некоторых видов фораминифер не все ядра участвуют в формировании гамет. Часть их остается в виде вегетативных ядер, не участвующих в процессах размножения. Этим вегетативные ядра напоминают макронуклеусы инфузорий. редования двух форм размножения - бесполого и полового, сопровождающегося чередованием двух поколений - микросферического (развивается из зиготы в результате оплодотворения) и макросферического (развивается из одноядерных амебоидных зародышей в результате бесполого размножения).

Отметим еще одну интересную особенность полового процесса фораминифер.

Известно, что у большинства животных организмов половые клетки (гаметы) бывают двух категорий. С одной стороны, это крупные, богатые протоплазмой и запасными питательными веществами неподвижные яйцевые (женские) клетки, а с другой - мелкие подвижные сперматозоиды (мужские половые клетки). Подвижность сперматозоидов обычно связана с наличием у них активно двигающегося нитевидного хвостового отдела.

У фораминифер, как мы видели, морфологических (структурных) различий между половыми клетками нет. По строению своему все они одинаковы и благодаря наличию жгутиков обладают подвижностью. Здесь нет еще структурных различий, которые позволили бы различать мужские и женские гаметы. Такая форма полового процесса является исходной, примитивной.

Огромное большинство современных видов фораминифер являются придонными (бентическими) организмами, встречающимися в морях всех широт от прибрежной зоны вплоть до самых больших глубин мирового океана. Изучение распределения корненожек в океане показало, что оно зависит от ряда факторов внешней среды - от температуры, глубины, солености. Для каждой из зон типичны свои виды фораминифер. Видовой состав фораминифер может служить хорошим показателем условий среды обитания.

Среди фораминифер имеются немногочисленные виды, ведущие планктонный образ жизни. Они постоянно «парят» в толще водяной массы. Типичный пример планктонных фораминифер - разные виды глобигерин (Globigerina, рис. 36). Строение их раковинок резко отличается от строения раковинок донных корненожек. Ра86 новинки глобигерин более тонкостенные, а главное, несут многочисленные расходящиеся во все стороны придатки - тончайшие длинные иглы. Это одно из приспособлений к жизни в планктоне. Благодаря наличию игл поверхность тела, а именно отношение поверхности к массе - величина, называемая удельной поверхностью, возрастает. Это увеличивает трение при погружении в воду и способствует «парению» в воде.

Рис. 36. Планктонная фораминифера Globigerina bulloides.

Широко распространенные в современных морях и океанах фораминиферы были богато представлены и в прежние геологические периоды начиная с самых древних кембрийских отложений. Известковые раковинки после размножения или смерти корненожки опускаются на дно водоема, где входят в состав отлагающегося на дне ила. Процесс этот совершается десятки и сотни миллионов лет; в результате на дне океана образуются мощные отложения, в состав которых входит несметное количество раковинок корненожек. При горообразовательных процессах, которые совершались и совершаются в земной коре, как известно, некоторые области дна океана поднимаются и становятся сушей, суша опускается и становится дном океана. Большая часть современной суши в различные геологические периоды была дном океана. Это относится в полной мере и к территории Советского Союза (за исключением немногих северных районов нашей страны: Кольский полуостров, большая часть Карелии и некоторые другие). Морские донные отложения на суше превращаются в горные осадочные породы. Во всех морских осадочных породах присутствуют раковинки корненожек. Некоторые же отложения, как например меловые, в основной своей массе состоят из раковин корненожек. Столь широкое распространение фораминифер в морских осадочных породах имеет большое значение для геологических работ, и в частности для геологической разведки. Фораминиферы, как и все организмы, не оставались неизменными. В течение геологической истории нашей планеты происходила эволюция органического мира. Изменялись и фораминиферы. Для разных геологических периодов истории Земли характерны свои виды, роды и семейства фораминифер.

Известно, что по остаткам организмов в горных породах (окаменелостям, отпечаткам и т. п.) можно определить геологический возраст этих пород . Для этой цели могут быть использованы и фораминиферы. Как ископаемые они благодаря своим микроскопическим размерам представляют очень большие преимущества, так как могут быть обнаружены в очень небольших количествах горной породы.

При геологической разведке полезных ископаемых (в особенности при разведке нефти) широко используется метод бурения. При этом получается колонка породы небольшого диаметра, охватывающая все слои, через которые прошел бур. Если эти слои представляют собой морские осадочные породы, то в них при микроскопическом анализе всегда обнаруживаются фораминиферы. Ввиду большой практической важности вопрос о приуроченности определенных видов фораминифер к тем или иным осадочным породам известкового возраста разработан с большой степенью точности.

Тип Фораминиферы (Foraminifera).

Фораминиферы - морские раковинные корненожки. Это самая многочисленная группа саркодовых. Фораминиферы встречаются во всех морях и особенно многообразны на глубинах 100-200м. Они входят в состав бентоса, ведут ползающий образ жизни. Редкие виды фораминифер, например из рода Globegirina, ведут планктонный образ жизни.

Раковины фораминифер бывают трех типов: органические из псевдохитина, инкрустированные, главным образом песчинками, и известковые. Это наружный скелет, выделяемый эктоплазмой клетки. Наиболее распространены известковые раковины. Размеры раковин варьируют от 20 мкм до 5-б см. Известковые раковины фораминифер могут быть однокамерными или многокамерными с устьем. Перегородки между камерами пронизаны отверстиями, и цитоплазма клетки представляет единое целое. Стенки раковин могут быть прободенными отверстиями или непрободенными.

Через устье раковины и отверстия в ее стенке выступают тонкие ветвящиеся ризоподии. Ризоподии выполняют две функции: двигательную и захват пищи. Фораминиферы при помощи ризоподии прикрепляются к субстрату и медленно передвигаются на этих перетекающих тонких нитях, а также с их помощью захватывают пищу. Они питаются бактериями, мелкими простейшими и даже многоклеточными. У фораминифер одно или множество ядер. У некоторых видов фораминифер присутствуют различные симбионты: бактерии и одноклеточные водоросли.

Жизненные циклы фораминифер. У большинства видов фораминифер в процессе жизненного цикла наблюдается чередование полового и бесполого размножения. На рисунке изображен цикл развития однокамерной фораминиферы Myxotheca arenilega, который отражает типичные черты развития раковинных корненожек.

Бесполое поколение раковинных корненожек - агамонты путем множественного деления образуют дочерние клетки агаметы. Эти амебоидные клетки покидают материнскую раковину, растут, выделяют вокруг себя новую раковину и дают начало другому поколению раковинных корненожек - гамонтам, размножающимся половым путем.

Гамонты претерпевают множественное деление (гамогонию), и при этом образуются мелкие клетки со жгутиками - гаметы. Гамет образуется при гамогонии значительно больше (сотни), чем число агамет при агамогонии (десятки). Гаметы выходят в воду, где происходит их копуляция. У большинства фораминифер наблюдается изогамная копуляция гамет, одинаковых по размерам и форме. Это наиболее примитивная форма полового процесса. Из зиготы формируются агамонты, выделяющие вокруг себя раковину.

Чередование полового и бесполого размножения в жизненном цикле видов получило название метагенеза.

В жизненном цикле фораминифер происходит чередование гаплоидного и диплоидного поколений (единственный случай в животном царстве). Агамонты, развивающиеся из зиготы, диплоидны. В процессе агамогонии одно из первых делений ядра - мейоз. Таким образом, в отличие от многоклеточных животных, у которых мейоз происходит при образовании гамет (гаметическая редукция), у фораминифер редукция хромосом наблюдается при формировании агамет. В отличие от зиготической редукции, у фораминифер редукция хромосом называется промежуточной, так как происходит не сразу после образования зиготы, а только при образовании агамет.

Значение фораминифер. Из раковин фораминифер слагаются слои известняка, мела и некоторых других пород. Фораминиферы известны в ископаемом состоянии с кембрия. Всего известно около 30 тыс. ископаемых видов фораминифер. Из раковин крупных видов фораминифер - нуммулитов, размеры которых достигали 5-16см, состоят нуммулитовые известняки. Фузулиновые известняки, состоящие из более мелких раковин фузулин, распространены более широко. Меловые отложения состоят из наиболее мелких раковин фораминифер, а также из известняковых панцирей жгутиконосцев - кокколитофорид.

Для каждого геологического периода были характерны особые массовые виды фораминифер, которые служат руководящими формами в стратиграфии для определения возраста геологических пластов.

Также, ископаемые фораминиферы используются геологами как индикаторы нефтеносных пластов на основе взаимосвязи нахождения отдельных видов фораминифер с залеганием нефти.

Класс Foraminifera включает в себя саркодовых, преимущественно морских, имеющих раковину с одним или несколькими отверстиями – устьями, через которые наружу выходят тонкие длинные нитевидные отростки цитоплазмы – псевдоподии. Основными функциями псевдоподий являются передвижение и сбор пищи (диатомовых водорослей, бактерий), также они принимают участие в газообмене и иногда в построении раковины.

Общая характеристика

Агглютинированная раковина фораминиферы Astrorhiza sp.

Размеры раковин фораминифер колеблются в значительных пределах от микроскопических (0,02-0,05 мм) до достаточно крупных (до 100 мм). Существует условное разделение фораминифер на крупные и мелкие: к первой группе относятся представители отрядов Fusulinida и Nummulitida, ко второй – все остальные. Крупные фораминиферы имеют гораздо более сложное строение.

Раковины фораминифер отличаются по способу образования, числу и расположению камер. По способу образования и составу выделяются раковины агглютинированные и секреционные. Секреционные раковины образуются эктоплазмой клетки и имеют у большинства форм известковый, а у меньшинства - органический состав. Агглютинированные раковины состоят из посторонних частиц: зерен кварца, кальцита, спикул губок и др., скрепленных цементом, который образуется эктоплазмой подобно тому, как отмечено для секреционных раковин. Имеются и более сложные варианты, когда секреционные известковые раковины содержат примеси агглютинированных частиц.

Секреционная раковина фораминиферы Quinqueloculina costata

По числу камер фораминиферы подразделяются на одно-, двух- и многокамерные. Однокамерные раковины могут быть округлые, звездчатые, цилиндрические и пр. Двухкамерные формы состоят из шарообразной первой камеры и различно устроенной второй: почти цилиндрической в одном случае и в виде длинной клубкообразной либо спиральной - в другом.

Многокамерные раковины различаются способом расположения камер. Камеры могут следовать одна за другой в один ряд, чаще они окружают первую камеру спирально или клубкообразно. В клубкообразном типе навивания наблюдается закономерное либо незакономерное расположение камер. Спиральнозавитые раковины подразделяются на спирально-плоскостные, спирально-конические и спирально-винтовые.

Спирально-плоскостные раковины различаются между собой формой поперечного сечения оборотов и степенью их перекрывания (объемлемости). Если обороты только соприкасаются и снаружи видны все обороты, то раковина называется эволютной . Если последний оборот полностью перекрывает предпоследний, то раковина называется инволютной . В этом случае снаружи виден только последний оборот, а их действительное число можно определить лишь на поперечном разрезе. При частичном перекрывании оборотов выделяются переходные варианты: полуинволютные и полуэволютные раковины. Внешне инволютные раковины выглядят как монетовидные, если диаметр раковины значительно больше толщины (Д >> Т), линзовидные (Д > Т), шаровидные (Д = Т) и веретеновидные (Д << Т)

Принципы классификации

При разделении фораминифер на отряды учитываются прежде всего следующие признаки: способ образования (секреционная или агглютинированная) и состав раковины (известковая, псевдохитиновая, возможно кремневая), число камер и характер их расположения, т.е. тип навивания. Помимо этих признаков рассматривается тип устья и строение стенки раковины. В классе выделяют от 13 до 52 отрядов.

Образ жизни

Современная планктонная фораминифера Globigerina falconensis

Современные фораминиферы в подавляющем большинстве обитают в нормально-морских бассейнах на всех глубинах и широтах, достигая максимального разнообразия в сублиторали тропических морей. Меньшая часть фораминифер существует в солоноватоводных бассейнах типа Черного и Азовского морей. Некоторые фораминиферы встречаются в пресных водоемах и еще реже в подземных водах пустынь, как, например, в Каракумах и Сахаре.

Большинство современных фораминифер передвигаются по дну с помощью псевдоподий, т.е. являются подвижным бентосом , меньшинство входит в группу неподвижного бентоса, прикрепленного или свободнолежащего. Часть фораминифер приспособилась к планктонному образу жизни: Globigerinida, видимо некоторые Fusulinida (шарообразная стадия Scwagerina ).

Геологическое значение и породообразующая роль

Нуммулитовый известняк

Среди фораминифер с агглютинированной раковиной породообразующее значение имеют представители отряда Astrorhizida, скопления которых формируют рабдамминовые пески и песчаники. Скопления секреционных известковых раковин фораминифер приводят к образованию различных известняков и мергелей, называемых по преобладающему роду или отряду: известняки фузулиновые, швагериновые, нуммулитовые, глобигериновые и т.п.

Фораминиферы являются одной из основных групп, используемых в биостратиграфии для создания зональных схем. Верхний палеозой подразделяется на фораминиферовые зоны на основании распределения фузулинид, мезокайнозой – на основании распределения секреционных известковых фораминифер других отрядов, среди которых важную роль имеют планктонные Globigerinida. Также по фораминиферам проводят палеобиогеографические реконструкции, восстанавливают палеоэкологические условия морских бассейнов, комплексы фораминифер используют как показатели глубины (батиметрических зон) и солености.

Ссылки и литература

  1. Михайлова И.А., Бондаренко О.Б. Палеонтология. Том 1. М.: Изд-во МГУ, 1997. 446 c. (djvu)

Фораминиферы, обитатели моря, устроены сложнее прочих корненожек. Число современных видов превышает 1000. Раковина фораминифер обнаруживает ряд этапов постепенного усложнения. В наиболее простых случаях раковина состоит из плотного органического вещества - псевдохитина ( рис. 8). Это вещество выделяется эктоплазмой. У других видов к этой тонкой пленке приклеиваются захваченные псевдоподиями посторонние частицы, главным образом песчинки. Получается хитиноидная основа, инкрустированная зернами кварца. Раковинки подобного типа массивны и тяжеловесны (например, роды Hyperammina, Rhabdammina, Astrorhiza, рис. 9). У большинства современных фораминифер раковина тоже тонкой хитиноидной основы, но пропитанная углекислым кальцием. Обладая большой прочностью, раковины такого рода отличаются гораздо большей легкостью, чем инкрустированные.

Форма раковины фораминифер чрезвычайно разнообразна ( рис. 9). У некоторых видов раковина имеет форму продолговатого мешка, у других вытягивается в трубку, у третьих эта трубка закручивается в спираль. Все это однокамерные формы ( рис. 9). Но у большинства фораминифер полость раковины поделена поперечными перегородками на камеры (многокамерные формы), которые сообщаются друг с другом отверстиями, имеющимися в перегородках. Взаимное расположение камер может быть различным ( рис. 9). Они могут располагаться в один ряд, в два ряда, спирально и т.п. Каждая многокамерная корненожка начинает свою жизнь будучи однокамерной, причем эта первая камера меньше позднейших и называется зародышевой. Отверстие, сообщающее раковину с внешним миром и служащее для выхода псевдоподий, называется устьем. Помимо устья у многих корненожек все стенки раковины пронизаны тончайшими порами, тоже служащими для выхода ложноножек.

Строение псевдоподий у Foraminifera, которые называются ризоподиями , чрезвычайно своеобразно. Они представляют собой длинные тонкие переплетающиеся и сливающиеся нити ( рис. 8), образующие вокруг раковинки сложную сеть. В ризоподиях осуществляется непрерывный ток цитоплазмы. По одной и той же ризоподии одни струи ее текут в центростремительном (к раковине), другие - в центробежном направлениях. Ризоподии служат для улавливания и, частично, переваривания пищи, а также для передвижения животного. Они способны сокращаться и вытягиваться.

Большинство Foraminifera живет на дне водоемов, иногда на глубинах в тысячи метров, питаясь разными мелкими организмами. Лишь немногие виды, например Globigerina, входят в состав планктона. Раковинки этих видов снабжены обычно длинными радиальными шипами, сильно увеличивающими поверхность и позволяющими "парить" в толще воды.