Гидроконтроллер для насосных станций автозапуск плавный пуск. Краткая справка: плавный пуск насосов

Скважинный насос, вследствие необходимости обеспечить высокую производительность при довольно небольших поперечных габаритах, представляет собой сложное устройство, работающее в довольно жестких условиях. А если учесть, что монтаж его (а также демонтаж) представляет собой довольно трудоемкую работу, то надежность скважинного насоса приобретает первостепенное значение. Одним из факторов, оказывающих решающее влияние на продолжительность работы этого агрегата, являются пусковые токи. Вследствие того, что вращающиеся части электродвигателя и самого насоса имеют определенную инерцию, в отличие от тока (то есть величина тока может практически мгновенно достигать очень высоких значений), то при включении возникают пусковые токи, которые в 4-10 раз превышают номинальные! А если еще скважинный насос включается часто? Например, из-за небольшого объема мембранного гидроаккумулятора или неправильной настройки реле давления? Понятно, что, в конце концов, изоляция обмотки электродвигателя не выдержит таких высоких тепловых нагрузок и произойдет короткое замыкание, следствием которого явится выход насоса из строя. Чтобы уменьшить пусковые токи, используются различные системы плавного пуска.

Виды плавного пуска

В настоящее время для скважинных насосов в основном используются две системы плавного пуска:

  1. 1.Плавный пуск SS . При этом способе при помощи электроники на электродвигатель подается плавно повышающееся напряжение (а значит и плавно повышающийся ток). Регулировка напряжения производится путем фазового управления. По такому принципу работают многие станции (пульты) управления скважинными насосами, как отечественных, так и зарубежных торговых марок: Каскад, Высота, Grundfos, Pedrollo и др.
  2. 2. Плавный пуск с помощью преобразования частоты. Этот способ является наиболее совершенным с точки зрения снижения пусковых токов. Преобразование частоты позволяет удерживать пусковой ток на уровне номинального. Основной недостаток станций (пультов) управления с частотно-регулируемым приводом – это их высокая стоимость, сравнимая со стоимостью самого насоса. Среди отечественных моделей стоит выделить СТЭП, СУ-ЧЭ, СУН. АСУН. Наиболее популярными зарубежными моделями являются SIRIO и SIRIO-ENTRY 230 итальянской торговой марки ITALTECNICA. Следует сказать, что в скважинных насосахсерии SQ/SQE встроена система плавного пуска на основе преобразования частоты.

Преимущества плавного пуска

  1. Снижение пусковых токов (в случае с частотно-регулируемым приводом пусковые токи уменьшаются до номинальных).
  2. Снижение механических нагрузок на рабочее колесо и подшипники скважинного насоса.
  3. Уменьшение или вовсе предотвращения гидроудара, возникающего в момент включения насоса. Гидроудар отрицательно воздействует не только на сам насос, но и на скважину, вызывая дополнительные нагрузки на стыки обсадных труб и вызывая быстрый износ фильтров. Как следствие, скважина начинает песковать.

На основе частотно-регулируемой системы плавного пуска можно реализовать управление мощностью насосы путем изменения частоты вращения его двигателя. То есть система управления точно подбирает частоту вращения электродвигателя, а значит и его мощность в соответствии с требуемой в данный момент производительностью, поддерживая постоянное давление в сети. Другими словами, на работу электродвигателя расходуется ровно столько электроэнергии, сколько нужно для обеспечения требуемой производительности и ни джоулем больше. Такая система реализована в скважинных насосах Grundfos серии SQE.

Как достичь оптимального энергосбережения в гидравлических системах с центробежными насосами? Этот вопрос сегодня все чаще возникает у специалистов и руководителей предприятий. Так какие же приборы способны сократить период окупаемости и повысить энергоэффективность – устройства плавного пуска, частотно-регулируемые приводы или использование параллельной схемы управления насосами? Авторы статьи предлагают тщательно проведенный анализ различных технических решений, иллюстрированный примерами внедрения на производстве, схемами и таблицами.

ООО «АББ», г. Москва


Обеспечение энергоэффективности – одна из наиболее актуальных и в то же время сложных задач в настоящее время. Сокращение затрат на потребление электроэнергии – это один из методов повышения рентабельности производства и эффективной эксплуатации технологических линий. Общий анализ предприятий в самых различных областях применения показывает, что затраты, связанные с закупкой оборудования и простоем производства из-за обслуживания и ввода нового оборудования в эксплуатацию, могут быть частично компенсированы за счет экономии на потреблении электроэнергии.


Энергоэффективные технологии – одно из приоритетных направлений компании АББ. Самые современные методы и разработки для обеспечения наиболее эффективной эксплуатации нашли свое применение в современном оборудовании компании АББ – преобразователях частоты и устройствах плавного пуска*, которые широко применяются для управления приводными механизмами насосных установок и позволяют существенно сократить потребление электроэнергии на объектах водоподготовки и водоочистки.

Часто используемый механический способ управления подачей насоса, или метод дросселирования, является крайне неэффективным с точки зрения экономии электроэнергии. В связи с этим возникает вопрос: какое из двух технических решений является самым экономичным методом снижения потребления энергии – частотно-регулируемые приводы или циклическое управление (рис. 1)? По существу, характеристика гидравлической системы, в которой используется центробежный насос, является определяющим фактором при выборе одного или другого метода управления.




Рис. 1. Регулирование расхода в системе посредством дросселирования, циклического и частотного управления

В сфере обработки сточных вод включение/выключение центробежных насосов, как правило, выполняется под контролем системы управления технологическим процессом. Остаточная вода (то есть вода, поступающая из жилых или коммерческих зданий) обычно собирается в отстойниках или резервуарах для сточных вод до момента ее перекачки с помощью насосов на муниципальные водоочистные станции . С учетом некоторой периодичности, использование устройств плавного пуска значительно снижает риск засорения насосов отходами, содержащимися в воде.


Циклическое управление является интересной альтернативой частотно-регулируемому приводу, несмотря на утрату гибкости при регулировании расхода. Другими словами, устройство плавного пуска считается подходящей и конкурентоспособной технологией, защищающей асинхронный электродвигатель от электрических перегрузок, механических ударов и вибрации при пуске, а также от гидравлических ударов в трубопроводной системе, возникающих при останове насоса. Кроме того, электродвигатель эксплуатируется в оптимальной рабочей точке и выключается на остальное время.

В следующих разделах приводится анализ энергосбережения и окупаемости решений управления с частотным регулированием и циклического управления для двух центробежных насосов (90 кВт и 350 кВт).

Типовая насосная система

При разработке насосной системы основным условием является обеспечение требуемого расхода Qop [м3/ч]. В идеальной системе выбранный насос имеет характеристику Qbep [м3/ч], совпадающую с характеристикой Qop [м3/ч]. На практике обычно выбирается насос большего типоразмера (рис. 2). В результате чего насос работает со сниженным гидравлическим КПД в большей части диапазона производительности. Сказанное выше проиллюстрировано на рис. 3 для двух центробежных насосов Aurora с номинальной мощностью 90 кВт и 350 кВт.


Таблица 1. Сравнительная характеристика параметров двух насосов



Рис. 2. Выбор насоса для промышленной установки




Рис. 3. Уменьшение гидравлического КПД в насосах 90 кВт и 350 кВт вследствие изменения параметров компонентов системы на 15%

Для анализа возможностей по экономии электроэнергии в этих насосах рассматривались три различные гидравлические системы: с преобладанием напора на преодоление трения, то есть отношение (?) статического напора Hst [м] к максимальной гидравлической высоте Hmax [м] составляет 5 %; с преобладанием статического напора (? составляет 50 %); с комбинированным напором (? составляет 25 %) (рис. 4).




Рис. 4. Гидравлические системы, выбранные для анализа возможного энергосбережения

Рабочие характеристики преобразователя частоты, устройства плавного пуска и электродвигателя


Преобразователи частоты имеют высокий КПД (ηconv), который естественным образом уменьшается, когда происходит снижение выходной мощности по отношению к номинальному значению. При работе УПП в установившемся режиме, то есть при активации байпаса, КПД устройств плавного пуска составляет практически 100 %. Следует отметить, что КПД устройств плавного пуска заметно снижается с увеличением количества пусков в час и сокращением интервалов рабочего времени, что обусловлено дополнительными потерями Джоуля при пуске и останове электро­двигателя, а также работой тиристоров (рис. 5).




Рис. 5.
Изменение электрического КПД (%) устройства плавного пуска и преобразователя частоты с насосной нагрузкой

Принятые недавно более строгие стандарты (классы IE) гарантируют повышенный КПД электродвигателя – при его работе под нагрузкой (рис. 6 и 7). На КПД электродвигателя (в строгой зависимости от класса) влияет использование либо преобразователя частоты, либо устройства плавного пуска: КПД снижается при питании от быстродействующего выходного инвертора ПЧ вследствие наличия гармонических искажений по току и напряжению, но не изменяется при питании от УПП после окончания переходного процесса разгона благодаря синусоидальной форме напряжения на выходе устройства.


Рис. 6. Влияние класса энергоэффективности электродвигателя на КПД насоса


Рис. 7. Изменение КПД электродвигателя с гидравлической нагрузкой

Влияние изменения характеристик компонентов системы, класса энергоэффективности электродвигателя и гармонических потерь в реальной системе приведено в табл. 2.

Таблица 2. Влияние большего типоразмера системы, класса электродвигателя и потерь от гармоник
на потребление электроэнергии (Pn =90 кВт – частота коммутации 4 кГц)




Экономия электроэнергии


Энергосбережение, достигнутое при использовании частотного и циклического управления в насосных системах 90 кВт и 350 кВт, показано на рис. 8 и 9. В системах с преобладанием напора на преодоление трения (? = 5 %) частотное управление обеспечивает более высокую экономию энергии практически во всем рабочем диапазоне (от 7 до 98 %) для обеих насосных систем. В случае насоса 90 кВт и в системе с преобладанием статического напора (? = 50 %) циклическое управление является лучшим техническим решением по сравнению с использованием частотного преобразователя для всех рабочих точек. Преобразователь частоты обеспечивает чуть более высокую экономию энергии для насоса мощностью 350 кВт, но только в диапазоне от 75 до 92 % производительности насоса. При рассмотрении комбинированной гидравлической системы (? = 25 %), управление посредством частотно-регулируемого привода позволяет получить более высокую экономию электроэнергии только для насосов с производительностью выше 28 % (для системы 90 кВт) и 24 % (для системы 350 кВт). В действительности, самая высокая экономия энергии при использовании частотного управления наблюдается в диапазоне производительности насоса от 15 до 20 %.





Рис. 8.
для насоса 90 кВт




Рис. 9. Экономия энергии [%] при частотном и циклическом управлении
для насоса 350 кВт

В отличие от преобразователей частоты, в которых присутствуют потери на полупроводниковых компонентах при номинальном режиме работы, устройства плавного пуска, в этом случае, работают через байпасный контактор, таким образом тиристоры не задействованы (рис. 10). И следовательно, нет дополнительных тепловых потерь. Эксплуатационные и системные характеристики, при которых предпочтителен выбор того или иного способа управления для регулирования производительности насоса, приведены на рис. 11**.




Рис. 10. Оптимальный КПД для насоса 90 кВт при байпасировании через устройство плавного пуска
при высоких нагрузках (90–100 % расчетной производительности)




Рис. 11. Контрольная точка, в которой экономия при использовании циклического управления становится выше,
чем при использовании решения с частотно-регулируемым приводом

Окупаемость инвестиций


Одним из важнейших факторов для заказчиков является расчет окупаемости инвестиций, в которые входят дополнительные расходы в связи с простоем оборудования во время монтажа и ввода в эксплуатацию устройства плавного пуска.

Стоимость преобразователя частоты в три раза выше стоимости устройства плавного пуска для насосов с номинальной мощностью до 25 кВт, а для насосов 350 кВт – в пять раз . Общие начальные инвестиции при частотном регулировании или циклическом управлении рассчитываются как сумма стоимости частотного преобразователя или устройства плавного пуска и плюс процентная доля расходов, связанных с простоем оборудования, по отношению к расходам, затраченным на протяжении всего жизненного цикла работы технологической линии .

Для частотных преобразователей и устройств плавного пуска эта доля составляет 7,5 %.

Стоимость индивидуальных компонентов может различаться по нескольким причинам. Прежде всего, следует отметить, что низковольтные частотные преобразователи чаще применяются при продолжительном режиме включения электродвигателя, а не в режиме пуска/останова, и обеспечивают более точное управление. Однако биполярные транзисторы с изолированным затвором (IGBT), применяемые в частотных преобразователях, требуют поддержания определенного температурного режима и охлаждения, что делает их достаточно дорогостоящими элементами и соответственно повышает стоимость частотных преобразователей по сравнению с устройствами плавного пуска такой же номинальной мощности. В устройствах плавного пуска полупроводниковые силовые элементы – тиристоры – отрабатывают только режимы пуска и останова со средним временем каждого режима около 15 секунд. Стоит отметить, что недорогие и надежные тиристоры не требуют постоянного принудительного охлаждения.

Период окупаемости для преобразователей частоты и циклического управления расходом показан на рис. 12 и 13 для электродвигателей 90 кВт и 350 кВт для трех гидравлических систем: ? = 5 %, 25 % и 50 %.




Рис. 12. Период окупаемости решений с частотным и циклическим управлением (устройство плавного пуска)
для насоса 90 кВт


Рис. 13. Период окупаемости для решений с частотным и циклическим управлением (устройство плавного пуска)
для насоса 350 кВт


Решения для параллельной схемы управления насосами


Во многих гидравлических системах оптимальную экономию электроэнергии с хорошей окупаемостью капиталовложений можно получить путем применения параллельной схемы управления насосами***, в которой используются как преобразователи частоты, так и устройства плавного пуска.


Рис. 14. Решение для системы с четырьмя параллельными насосами
(гидравлическая система с преобладанием напора на преодоление трения)

Таблица 3. Схема управления в системе с четырьмя параллельными насосами





В гидравлических системах с преобладанием напора на преодоление трения (? = 5 %) и с четырьмя параллельными насосами – каждый насос с номинальной мощностью 350 кВт (2500 м куб./ч) – оптимально использовать два преобразователя частоты и два устройства плавного пуска (рис. 14). В схеме, обеспечивающей наилучшее решение по окупаемости и гибкости управления, два насоса, 1 и 2, управляются устройствами плавного пуска, а насосы 3 и 4 – преобразователями частоты (см. табл. 3). Насосы с устройством плавного пуска работают с максимальной производительностью. Увеличив частоту вращения насосов, управляемых преобразователями частоты, до номинальной можно обеспечить максимальную производительность системы. В смешанной гидравлической системе (гидравлическая система со статическим напором/с преобладанием напора для преодоления трения) (? = 25 %), схема, позволяющая получить оптимальное решение с точки зрения окупаемости инвестиций и гибкости управления, представляет собой три насоса, первые два из которых управляются устройствами плавного пуска, а третий насос – преобразователем частоты (см. рис. 15 и табл. 5).




Рис. 15. Решение для системы с тремя параллельными насосами
(гидравлическая система со статическим напором/с преобладанием напора на преодоление трения)

Таблица 4. Схема управления расходом в системе с тремя параллельными насосами
(комбинированная гидравлическая система)





Для обеих систем начальные инвестиции по закупке устройств плавного пуска и преобразователей частоты трансформируются в экономическую прибыль менее чем за 1,5 года при условии, что регулируемый расход составляет менее 80 % от общей производительности (рис. 16).

Таблица 5. Параметры






Рис. 16. Расчетный период окупаемости для двух установок,
с параллельным управлением насосов от преобразователей частоты и устройств плавного пуска

Лучшее решение?


Анализ эффективности систем частотного и циклического регулирования расхода был проведен для двух центробежных насосов (90 кВт и 350 кВт) с двигателями до 1000 В. Полученные результаты свидетельствуют о том, что управление посредством частотного регулирования является наилучшим решением в гидравлических системах с преобладанием напора на преодоление потерь на трение (транспортировка жидкости без разности высот в случае использования циркуляционных насосов). В системах с преобладанием статического напора рекомендуется использовать циклическое управление. Следует избегать применения преобразователей частоты в системах с пологими характеристиками насоса и нагрузки из-за риска нестабильности и поломки .

Устройства плавного пуска являются наиболее перспективным техническим решением для установок водоочистки и водоотведения, в которых необходимо осуществлять включение/выключение насоса для откачки жидкости из коллекторов и последующее перемещение сточных вод на очистные сооружения. Устройства плавного пуска отличаются высокой надежностью и имеют встроенные функции для устранения гидроударов как при пуске, так и при останове системы. Однако максимального энергосбережения и минимального периода окупаемости для широкого ряда гидравлических систем можно достичь путем применения параллельных схем управлением насосами, в которых используется комбинация пре­образователей частоты и устройств плавного пуска. Опираясь на ноу-хау в области автоматизации и широкий ассортимент низковольтного оборудования для автоматизации, компания АББ предлагает и другие решения для эффективного использования энергии в самых различных областях применения.

______________________________________
* Устройства плавного пуска регулируют уровень напряжения, подаваемого на электродвигатель, за счет чего обеспечивается плавный запуск и останов привода.

** При переводе экономии энергии в процентах (в отношении фиксированной скорости и дросселирования) в показатель экономической эффективности предполагается, что насос работает 8760 часов в год (330 x 24) при цене 0,065 долл. США за 1 кВт-ч электричества .

*** Для оптимального регулирования расхода в параллельных схемах работает один насос до тех пор, пока не будет достигнута максимальная производительность, после чего гидравлическая нагрузка разделяется на два одновременно работающих насоса . При достижении второй контрольной точки активируются три насоса и т.д.

Литература


1. ITT Industries (2007). ITT’s Place in the cycle of water: Everything but the pipes.
2. Aurora Pump (Pentair Pump Group) June 1994, United States.
3. IEC 60034-31:2009. Rotating electrical machines. Part 31: Guide for the selection and application of energy-efficient motors including variable speed applications.
4. Brunner, C. U. (4–5 February 2009). Efficiency classes: Electric motors and systems. Motor energy performance standards event, Sydney (Australia). www.motorsystems.org .
5. Department of Energy (DOE). Energy International Agency (EIA) (June 2009). Average retail price of electricity to ultimate customers.
6. Sagarduy, J. (January 2010). Economic evaluation of reduced voltage starting methods. SECRC/PT-RM10/017.
7. Hydraulic Institute (August 2008). Pumps & Systems, Understanding pump system fundamentals for energy efficiency. Calculating cost of ownership.
8. ITT Flygt (2006). Cirkulationspumpar med vеt motor för värmesystem i kommersiella byggnader.
9. Vogelesang, H. (April 2009). Energy efficiency. Two approaches to capacity control. World Pumps Magazine.

Сфера применения и функции

Для запуска и отключения бытовых насосов широко используется устройство плавного пуска EXTRA Акваконтроль УПП-2,2С 220 В. Прибор применяют в отношении вибрационных и центробежных электронасосов. Кроме того, устройство положительно зарекомендовало себя в работе с асинхронными и коллекторными электрическими двигателями. Оно также может производить управление осветительными и нагревательными приборами при условии, что максимальная мощность, указанная в инструкции, не будет превышена.

Основной функцией УПП-2,2С является исключение гидравлических и механических ударов, которые могут возникать во время запуска насоса. Также прибор предотвращает поломки насоса, возникающие вследствие скачков напряжения электросети.


Принцип работы

Управление EXTRA Акваконтроль УПП-2,2С происходит через сигнальный кабель. Разработчики снабдили прибор защитой от низкого и высокого напряжения электросети. Если напряжение превышает 252 В, насос будет отключен в автоматическом режиме. После стабилизации напряжения до 245 В насос снова включается. При достижении нижнего порога давления в 160 В, насос также будет отключен. Как только напряжение вырастет свыше 160 В, насос автоматически запустится. Длительность плавного пуска зависит от типа насоса: вибрационные – 2 сек; центробежные – 3-7 сек.


Требования по эксплуатации

Устройство EXTRA Акваконтроль должно быть установлено в закрытой комнате, где отсутствует искусственная регуляция климата. Производитель запрещает подавать напряжение на сигнальный кабель. УПП-2,2С не может использоваться для контроля работы насосной станции без наличия гидроаккумулятора. Помните, включение и отключение насоса с периодом меньше 60 секунд приведет к выходу из строя устройства.

Категорически запрещено эксплуатировать прибор при повреждениях корпуса или при снятой крышке. Нельзя самостоятельно производить ремонт и разборку УПП-2,2С. При выполнении всех правил, изложенных в инструкции, срок эксплуатации EXTRA Акваконтроль УПП-2,2С составляет 5 лет. Ежегодно следует осматривать корпус прибор на предмет повреждений корпуса.

Устройство плавного пуска ABB PSR-25-600

Всем привет! Сегодня будет статья, в которой показан реальный пример использования устройства плавного пуска (мягкого пускателя) на практике. Плавный пуск электродвигателя установлен мною на реальном устройстве, приводятся фото и схемы.

Что это за устройство, я ранее подробно рассказывал . Напоминаю, что мягкий пускатель и устройство плавного пуска суть одно и то же устройство. Названия эти берутся от английского Soft Starter. В статье я буду называть этот блок и так, и эдак, привыкайте). Информации по устройствам плавного пуска в интернете достаточно, рекомендую также почитать .

Моё мнение по пуску асинхронных двигателей, подтвержденное многолетними наблюдениями и практикой. При мощности двигателя более 4 кВт стоит подумать, чтобы обеспечить плавный разгон двигателя. Это нужно при тяжелой, инерционной нагрузке, которая как раз и подключается на вал такого двигателя. Если двигатель используется с редуктором, то ситуация полегче.

Простейший и самый дешевый вариант плавного пуска – вариант с включением двигателя через схему “Звезда-Треугольник”. Более “плавные” и гибкие варианты – устройство плавного пуска и преобразователь частоты (в народе – “частотник”). Есть ещё древний способ, который уже почти не применяется – .

Кстати, верный признак того, что двигатель питается через частотник – хорошо слышимый писк с частотой около 8 кГц, особенно на низких оборотах.

Я уже использовал устройство плавного пуска от Schneider Electric, был такой положительный опыт в моей деятельности. Тогда нужно было плавно включать/выключать длинный круговой конвейер с заготовками (двигатель 2,2 кВт с редуктором). Жаль, что фотоаппарата тогда не было под рукой. Но в этот раз всё рассмотрим очень детально!

Зачем понадобился плавный пуск двигателя

Итак, проблема - на котельной есть насосы подпитки котла водой. Всего два насоса, и включаются они по команде от системы слежения за уровнем воды в котле. Одновременно может работать только один насос, выбор насоса осуществляет оператор котельной путем переключения водяных кранов и электрических переключателей.

Насосы приводятся в действие обычными асинхронными двигателями. Асинхронные двигатели 7,5 кВт через обычные контакторы (). А поскольку мощность большая, то пуск очень жесткий. Каждый раз при пуске возникает ощутимый гидроудар. Портятся и сами двигатели, и насосы, и гидросистема. Иногда такое ощущение, что трубы и краны сейчас разлетятся вдребезги.


Подписывайтесь! Будет интересно.


Кроме того, когда котёл остывший, и в него резко подается горячая вода (более 95 °С), то происходят неприятные явления, напоминающие взрывообразное бурление. Бывает и наоборот, воду с температурой 100 °С можно холодной – когда в котле находится сухой пар с температурой почти 200 °С. В этом случае тоже происходят вредные гидроудары.

Всего на котельной два идентичных котла, но во втором установлены частотники на насосы. Котлы (точнее, парогенераторы) вырабатывают пар с температурой более 115 °С и давлением до 14 кгс/см2.

Жаль, что конструкцией котла в электросхеме не предусмотрено было плавное включение двигателей насоса. Хотя котлы итальянские, на этом было решено сэкономить…

Повторюсь, что для плавного включения асинхронных двигателей мы имеем на выбор такие варианты:

  • система плавного пуска (мягкий пуск)
  • частотный преобразователь (инвертор)

В данном случае необходимо было выбрать тот вариант, при котором бы было минимальное вмешательство в рабочую схему управления котлом.

Дело в том, что любые изменения в работе котла должны быть обязательно согласованы с производителем котла (либо сертифицированной организацией) и с надзорной организацией. Поэтому изменения должны быть внесены незаметно и без лишнего шума. Хотя, в систему безопасности я не вмешиваюсь, поэтому тут не так строго.

Мои постоянные читатели знают, что теперь, после , я имею полное право выполнять работы по КИПиА в котельной.

Выбор устройства плавного пуска

Для начала посмотрим на шильдик двигателя:

Мощность двигателя – 7,5 кВт, обмотки соединены в схему “треугольник”, номинальный потребляемый при этом ток – 14,7А.

Вот как выглядела система пуска (“жёсткая”):

Напоминаю, что у нас два двигателя, и запускаются они контакторами 07КМ1 и 07КМ2. Контакторы снабжены блоками дополнительных контактов – для индикации и контроля включения.

В качестве альтернативы было выбрано устройство плавного пуска ABB PSR-25-600. Его максимальный ток – 25 Ампер, так что запас у нас хороший. Особенно, если учесть, что работать придётся в тяжелых условиях – количество пусков/стопов, высокая температура. Фото – в начале статьи.

Вот наклейка на софтстартере с параметрами:

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Soft Starter ABB PSR-25-600 – параметры

  • FLA – Full Load Amps – значение силы тока при полной нагрузке – почти 25А,
  • Uc – рабочее напряжение,
  • Us – напряжение цепи управления.

Установка УПП

Примерил для начала:

По высоте подходит один в один, по ширине тоже, только длина чуть больше, но место есть.

Теперь вопрос по цепям управления. Контакторы в исходной схеме включались напряжением 24 VAC, а наши АББ управляются напряжением минимум 100 VAC. Налицо необходимость промежуточного реле либо изменения напряжения питания цепи управления.

Однако, на официальном сайте ABB я нашёл схему, где показано, что это устройство способно работать и при 24 VAC. Попытал счастья – не получилось, не запускается…

Что же, ставим промежуточное реле, которое приводит напряжение к нужному уровню:

Вот с другого ракурса:

Вот и всё. Промежуточные реле обозвал 07КМ11 и 07КМ21. Кстати, они также нужны и для дополнительных цепей. Через них включаются индикаторы, и сухие контакты для внешнего устройства (пока не используются, в старой схеме – оранжевые провода).

Когда хотел управление использовать напрямую, без реле (24 VAC), планировал индикаторы включения пустить через контакты Com – Run, которые теперь остались неиспользованные.

Схемы плавного пуска

Вот исходная схема.

А вот как нехитро я изменил схему:

По настройкам – коротко. Тут три регулировки – время разгона, время замедления, и начальное напряжение.

Можно было бы использовать одно устройство плавного пуска, и контакторы выбора двигателя (переключать одно устройство на два двигателя). Но это усложнит и сильно изменит схему, и понизит надежность. Что для такого стратегического объекта, как котельная, очень важно.

Осциллограммы напряжения

Орешек знанья твёрд, но всё же
мы не привыкли отступать!
Нам расколоть его поможет
киножурнал «Хочу всё знать!»

Собрать схему отверткой всякий может. А для тех, кто хочет увидеть напряжение и понять, какие реальные процессы происходят, без осциллографа не обойтись. Публикую осциллограммы на выходе 2Т1 устройства плавного пуска.

Не правда ли, логическая нестыковка – двигатель выключен, а напряжение на нём есть?! Это особенность некоторых устройств мягкого пуска. Неприятная и опасная. Да, на двигателе есть напряжение 220В, даже когда он стоит.

Дело в том, что управление происходит только по двум фазам, а третья (L3 – T3) подключена к двигателю напрямую. А так как тока нет, то на всех выходах устройства действует напряжение фазы L3, которое проходит через обмотки двигателя. Та же ерунда бывает и в трехфазных твердотельных реле, .

Будьте осторожны! При обслуживании двигателя, подключенного к устройству мягкого пуска, отключайте вводные автоматы, и проверяйте отсутствие напряжения!

Поскольку нагрузка индуктивная, то синусоида не только режется на куски, но и сильно искажается.

Помеха прёт, и это надо учитывать – возможны сбои в работе контроллеров и другой слаботочки. Чтобы это влияние уменьшить, надо разносить и экранировать цепи, устанавливать дроссели на входе, и др.

Фото сделано да пару секунд до того, как включился внутренний контактор (байпас), который подал полное напряжение на двигатель.

Фото корпуса

Ещё небольшой бонус – несколько фото внешнего вида устройства плавного пуска ABB PSR-25-600.

ABB PSR-25-600 – вид снизу

Опция – разъем и крепления для подключения вентилятора охлаждения, в случае больших нагрузок

ABB PSR-25-600 – входные силовые клеммы и клеммы питания и управления.

Пока всё, вопросы и критика в комментариях по плавному пуску электродвигателей приветствуются!

С майскими праздниками!

Серии ES024 компания «Эффективные Системы» производит станции управления , способные объединять в единую систему до 7 насосов номинальной мощностью от 1,5 до 315 кВт, номинальным напряжением 380 В. По техническому заданию заказчика возможно изготовление станций управления иных номинальных мощностей и напряжений.

В зависимости от потребности заказчика в станциях управления насосами производства компании «Эффективные Системы» могут быть реализованы следующие функции:

  1. Настройка до 8 различных заданных уровней давления, которые необходимо поддерживать, распределенных по времени суток;
  2. Возможность перехода системы в «спящий режим» при отсутствии водоразбора или при малом водоразборе, что позволяет существенно снизить энергопотребление;
  3. Периодическая смена насосов, позволяющая обеспечить их равномерный износ и избежать ржавления резервных насосов;
  4. Управление дренажными насосами, позволяющее контролировать уровень сточных вод;
  5. Определение уровня жидкости и управление наполнением резервуара, позволяющие запускать насос в зависимости от количества жидкости в резервуаре и восполнять ее расход с заданным уровнем подачи;
  6. Сигнализация о повышенном и пониженном давлении в трубопроводе;
  7. Занесение в память токовых параметров до 7 двигателей насосов для обеспечения токовой защиты и защиты от перегрузки любого насоса, работающего в каждый конкретный момент времени;
  8. Диагностика неисправностей, позволяющая автоматически выявлять и исключать из алгоритма работы системы неисправные насосы.

Для получения технико-коммерческого предложения свяжитесь с нами одним из указанных вверху и внизу данной страницы способом.

КРАТКАЯ СПРАВКА: ПЛАВНЫЙ ПУСК НАСОСОВ

На практике пусковой ток электродвигателей насосов в 3-5 и более раз превосходит номинальный ток. Это в конечном счете приводит к увеличенному тепловому износу изоляции обмоток статора (из-за этого в значительной степени снижается долговечность работы и надежность электродвигателя насоса). Помимо этого, если мощность питающей сети недостаточна, возможно краткосрочное падение напряжения, а это уже может негативно влиять на работу другого электрооборудования, запитанного от той же сети.

Прямой пуск насоса вреден и для агрегата и для скважины в целом, так как сопровождается гидроударами, которые разрушают запорную арматуру, трубопровод и сам насос. При прямом запуске скважинного насоса может наблюдаться сильный приток воды из водного пласта и это приводит к разрушению фильтровальной зоны, а, следовательно, к попаданию песка в скважину.

Единственным эффективным решением данных проблем является реализация плавного пуска насоса , для чего разработан целый ряд технических средств, в том числе устройства плавного пуска и преобразователи частоты.

Задача устройств плавного пуска — обеспечить защиту насосных агрегатов от высокого пускового тока, механических перегрузок, гидроударов, т.е. обеспечить долговечность и надежную эксплуатацию оборудования. Наряду с решением задачи плавного пуска применение преобразователей частоты при работе насосов позволяет согласовать производительность насоса с расходом перекачиваемой жидкости в каждый момент времени, что позволяет значительно снизить энергопотребление системы.