Импульсный блок питания на 30. Импульсный лабораторный блок питания на TL494

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 - ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник...
Шаг 1: Какие детали необходимы для сборки блока питания...
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок....
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В - 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ - 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты....
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие...


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку - типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 - 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения...
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы - отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 - ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Или создавать намотку, можно своими руками собрать блок питания импульсного типа, который требует трансформатора всего с несколькими витками.

При этом, потребуется небольшое количество деталей, а работу можно выполнить за 1 час. В данном случае, основой для блока питания используется микросхема IR2151.

Для работы понадобятся следующие материалы и детали:

  1. PTC термистор любого типа.
  2. Пара конденсаторов , которые выбираются с расчетом 1мкф. на 1 Вт. При создании конструкции подбираем конденсаторы так, чтобы они вытянули 220 Вт.
  3. Диодная сборка типа «вертикалка».
  4. Драйвера типа IR2152, IR2153, IR2153D.
  5. Полевые транзисторы типа IRF740, IRF840. Можно выбрать и другие, если у них хороший показатель сопротивления.
  6. Трансформатор можно взять из старых компьютерных системных блоков.
  7. Диоды , устанавливаемые на выходе, рекомендуется брать из семейства HER.

Кроме этого, понадобятся следующие инструменты:

  1. Паяльник и расходные материалы.
  2. Отвертка и плоскогубцы.
  3. Пинцет.

Также, не стоит забывать и о необходимости хорошего освещения на месте работы.

Пошаговая инструкция


принципиальная схема
структурная схема

Сборка проводится согласно составленной схеме цепи. Микросхема была подобрана согласно особенностям цепи.

Сборка проводится следующим образом:

  1. На входе устанавливаем PTC термистор и диодные мосты.
  2. Затем , устанавливается пара конденсаторов.
  3. Драйвера необходимы для регулирования работы затворов полевых транзисторов. При наличии у драйверов индекс D в конце маркировки устанавливать FR107 не нужно.
  4. Полевые транзисторы устанавливаются без закорачивания фланцев. При проведении крепления к радиатору, используют специальные изоляционные прокладки и шайбы.
  5. Трансформаторы устанавливаются с закороченными выводами.
  6. На выходе диоды.

Все элементы устанавливаются в отведенные места на плате и припаиваются с обратной стороны.

Проверка

Для того, чтобы правильно собрать блок питания, нужно внимательно отнестись к установке полярных элементов, а также следует быть осторожным при работе с сетевым напряжением. После отключения блока от источника питания, в цепи не должно оставаться опасного напряжения. При правильной сборке, последующая наладка не проводится.

Проверить правильность работы блока питания можно следующим образом:

  1. Включаем в цепь, на выходе лампочка, к примеру,12 Вольт. При первом кратковременном пуске, лампочка должна гореть. Кроме этого, следует обратить внимание на то, что все элементы не должны нагреваться. Если что-то греется, значит, схема собрана неправильно.
  2. При втором пуске замеряем значение тока при помощи тестера. Даем проработать блоку достаточное количество времени для того, чтобы убедиться в отсутствии нагревающихся элементов.

Кроме этого, нелишним будет проверка всех элементов при помощи тестера на наличие высокого тока после выключения питания.

  1. Как ранее было отмечено , работа импульсного блока питания основана на обратной связи. Рассматриваемая схема не требует специальной организации обратной связи и различных фильтров по питанию.
  2. Особое внимание следует уделить выбору полевых транзисторов. В данном случае, рекомендуются полевые транзисторы IR, которые славятся устойчивостью к тепловому разрешению. Согласно данным производителя, они могут стабильно работать до 150 градусов Цельсия. Однако, в этой схеме они не сильно нагреваются, что можно назвать весьма важной особенностью.
  3. Если нагрев транзисторов происходит постоянно , следует устанавливать активное охлаждение. Как правило, оно представлено вентилятором.

Достоинства и недостатки


Импульсный преобразователь имеет следующие достоинства:

  1. Высокий показатель коэффициента стабилизации позволяет обеспечить условия питания, которые не будут вредить чувствительной электронике.
  2. Рассматриваемые конструкции обладают высоким показателем КПД. Современные варианты исполнения имеют этот показатель на уровне 98%. Это связано с тем, что потери снижены до минимума, о чем говорит малый нагрев блока.
  3. Большой диапазон входного напряжения – одно из качеств, из-за которого распространилась подобная конструкция. При этом, КПД не зависит от входных показателей тока. Именно невосприимчивость к показателю напряжения тока позволяет продлить срок службы электроники, так как в отечественной сети электроснабжения прыжки показателя напряжения частое явление.
  4. Частота входящего тока оказывает влияние на работу только входных элементов конструкции.
  5. Малые габариты и вес , также обуславливают популярность из-за распространения портативного и переносного оборудования. Ведь при использовании линейного блока вес и габариты увеличиваются в несколько раз.
  6. Организация дистанционного управления.
  7. Меньшая стоимость.

Есть и недостатки:

  1. Наличие импульсных помех.
  2. Необходимость включения в цепь компенсаторов коэффициента мощности.
  3. Сложность самостоятельного регулирования.
  4. Меньшая надежность из-за усложнения цепи.
  5. Тяжелые последствия при выходе одного или нескольких элементов цепи.

При самостоятельном создании подобной конструкции, следует учитывать то, что допущенные ошибки могут привести к выходу из строя электропотребителя. Поэтому нужно предусмотреть наличие защиты в системе.

Устройство и особенности работы


При рассмотрении особенностей работы импульсного блока, можно отметить следующие:

  1. Сначала происходит выпрямление входного напряжения.
  2. Выпрямленное напряжение в зависимости от предназначения и особенностей всей конструкции, перенаправляется в виде прямоугольного импульса высокой частоты и подается на установленный трансформатор или фильтр, работающий с низкими частотами.
  3. Трансформаторы имеют небольшие размеры и вес при использовании импульсного блока по причине того, что повышение частоты позволяет повысить эффективность их работы, а также уменьшить толщину сердечника. Кроме этого, при изготовлении сердечника может использоваться ферромагнитный материал. При низкой частоте, можно использовать только электротехническую сталь.
  4. Стабилизация напряжения происходит при помощи отрицательной обратной связи. Благодаря использованию данного метода, напряжение, подаваемое к потребителю, остается неизменным, несмотря на колебание входящего напряжения, и создаваемой нагрузки.

Обратная связь может быть организована следующим образом:

  1. При гальванической развязке , используется оптрон или выход обмотки трансформатора.
  2. Если не нужно создавать развязку , используется резисторный делитель напряжения.

Подобными способами выдерживается выходное напряжение с нужными параметрами.

Стандартные блоки импульсного питания, который может использоваться, к примеру, для регулирования выходного напряжения при питании , состоит из следующих элементов:

  1. Часть входная, высоковольтная. Она, как правило, представлена генератором импульсов. Ширина импульса – основной показатель, оказывающий влияние на выходной ток: чем шире показатель, тем больше напряжение, и наоборот. Импульсный трансформатор стоит на разделе входной и выходной части, проводит выделение импульса.
  2. На выходной части стоит PTC термистор . Он изготавливается из полупроводника, имеет положительный показатель коэффициента температуры. Данная особенность означает, что при повышении температуры элемента выше определенного значения, значительно поднимается показатель сопротивления. Используется в качестве защитного механизма ключа.
  3. Низковольтная часть. С низковольтной обмотки проводится снятие импульса, выпрямление происходит при помощи диода, а конденсатор выступает в качестве фильтрующего элемента. Диодная сборка может провести выпрямление тока до значения 10А. Следует учитывать, что конденсаторы могут быть рассчитаны на различную нагрузку. Конденсатор проводит снятие оставшихся пиков импульса.
  4. Драйвера проводят гашение возникающего сопротивления в цепи питания. Драйвера во время работы проводят поочередное открытие затворов установленных транзисторов. Работа происходит с определенной частотой
  5. Полевые транзисторы выбирают с учетом показателей сопротивления и максимального напряжения при открытом состоянии. При минимальном значении, сопротивления значительно повышается КПД и уменьшается нагрев во время работы.
  6. Трансформатор типовой для понижения.

С учетом выбранной схемы, можно приступать к созданию блока питания рассматриваемого типа.

Каждому радиолюбителю, ремонтнику или просто мастеру необходим источник питания, чтобы питать свои схемы, тестировать их при помощи блока питания, либо же просто иногда необходимо зарядить аккумулятор. Случилось так, что и я увлекся этой темой некоторое время назад и мне так же стал необходим подобный девайс. Как обычно, по этому вопросу было перелопачено много страниц в интернете, следил за многими темами на форумах, но точно того, что было нужно мне в моем представлении не было нигде - тогда было решено все сделать самому, собрав всю необходимую информацию по частям. Таким образом родился на свет импульсный лабораторный блок питания на микросхеме TL494.

Что особенного – да вроде мало чего, но я поясню – переделывать родной блок питания компьютера все на той же печатной плате мне кажется не совсем по фен-шую, да и не красиво. С корпусом та же история – дырявая железяка просто не смотрится, хотя если есть фанаты такого стиля, ничего против не имею. Поэтому в основе данной конструкции лежат лишь основные детали от родного компьютерного блока питания, а вот печатная плата (точнее печатные платы – их на самом деле три) сделана уже отдельно и специально под корпус. Корпус здесь состоит также из двух частей – само собой основа корпус Kradex Z4A, а так же вентилятор (кулер), который вы можете видеть на фото. Он является как бы продолжением корпуса, но обо всем по порядку.

Схема блока питания:

Список деталей вы можете увидеть в конце статьи. А теперь коротко разберем схему импульсного лабораторного блока питания. Схема работает на микросхеме TL494, существует много аналогов, однако рекомендую все же использовать оригинальные микросхемы, стоят они совсем недорого, а работают надежно в отличие от китайских аналогов и подделок. Можно также разобрать несколько старых блоков питания от компьютеров и насобирать необходимых деталей от туда, но я рекомендую по возможности использовать все же новые детали и микросхемы – это повысит шанс на успех, так сказать. По причине того, что выходная мощность встроенных ключевых элементов TL494 не достаточная, чтобы управлять мощными транзисторами, работающих на основной импульсный трансформатор Tr2, строится схема управления силовыми транзисторами T3 и T4 с применением управляющего трансформатора Tr1. Данный трансформатор управления использован от старого блока питания компьютера без внесения изменений в состав обмоток. Трансформатор управления Tr1 раскачивается транзисторами T1 и T2.

Сигналы управляющего трансформатора через диоды D8 и D9 поступают на базы силовых транзисторов. Транзисторы T3 и T4 используются биполярные марки MJE13009, можно использовать транзисторы на меньший ток – MJE13007, но здесь все же лучше оставить на больший ток, чтобы повысить надежность и мощность схемы, хотя от короткого замыкания в высоковольтных цепях схемы это не спасет. Далее эти транзисторы раскачивают трансформатор Tr2, который преобразует выпрямленное напряжение 310 вольт от диодного моста VDS1 в необходимое нам (в данном случае 30 – 31 вольт). Данные по перемотке (или намотке с нуля) трансформатора чуть позже. Выходное напряжение снимается с вторичных обмоток этого трансформатора, к которым подключается выпрямитель и ряд фильтров, чтобы напряжение было максимально без пульсаций. Выпрямитель необходимо использовать на диодах Шоттки, чтобы минимизировать потери при выпрямлении и исключить большой нагрев этого элемента, по схеме используется сдвоенный диод Шоттки D15. Здесь также чем больше допустимый ток диодов, тем лучше. При неосторожности при первых запусках схемы большая вероятность испортить эти диоды и силовые транзисторы T3 и T4. В выходных фильтрах схемы стоит использовать электролитические конденсаторы с низким ЭПС (Low ESR). Дроссели L5 и L6 были использованы от старых блоков питания компьютеров (хотя как старых – просто неисправных, но достаточно новых и мощных, кажется 550 Вт). L6 использован без изменения обмотки, представляет собой цилиндр с десятком или около того витков толстого медного провода. L5 необходимо перемотать, так как в компьютере используется несколько уровней напряжения – нам нужно только одно напряжение, которое мы будем регулировать.

L5 представляет собой кольцо желтого цвета (не всякое кольцо пойдет, так как могут применяться ферриты с разными характеристиками, нам нужно именно желтого цвета). На это кольцо нужно намотать примерно 50 витков медного провода диаметром 1,5 мм. Резистор R34 гасящий – он разряжает конденсаторы, чтобы при регулировке не возникло ситуации долгого ожидания уменьшения напряжения при повороте ручки регулировки.

Наиболее подверженные нагреву элементы T3 и T4, а также D15 устанавливаются на радиаторы. В данной конструкции они были также взяты от старых блоков и отформатированы (отрезаны и изогнуты под размеры корпуса и печатной платы).

Схема является импульсной и может вносить в бытовую сеть собственные помехи, поэтому необходимо использовать синфазный дроссель L2. Чтобы отфильтровывать уже имеющиеся помехи сети используются фильтры с применением дросселей L3 и L4. Терморезистор NTC1 исключит скачок тока в момент включения схемы в розетку, старт схемы получится более мягкий.

Чтобы управлять напряжением и током, а также для работы микросхемы TL494 необходимо напряжение более низкого уровня, чем 310 вольт, поэтому используется отдельная схема питания для этого. Построена она на малогабаритном трансформаторе Tr3 BV EI 382 1189. С вторичной обмотки напряжение выпрямляется и сглаживается конденсатором – просто и сердито. Таким образом, получаем 12 вольт, необходимые для управляющей части схемы блока питания. Далее 12 вольт стабилизируются до 5 вольт при помощи микросхемы линейного стабилизатора 7805 – это напряжение используется для схемы индикации напряжения и тока. Также искусственно создается напряжение -5 вольт для питания операционного усилителя схемы индикации напряжения и тока. В принципе можно использовать любую доступную схему вольтметра и амперметра для данного блока питания и при отсутствии необходимости данный каскад стабилизации напряжения можно исключить. Как правило, используются схемы измерения и индикации, построенные на микроконтроллерах, которым необходимо питания порядка 3,3 – 5 вольта. Подключение амперметра и вольтметра указано на схеме.

На фото печатная плата с микроконтроллером - амперметр и вольтметр, к панели прикреплены на болтики, которые ввинчиваются в гайки, надежно приклеенные к пластмассе супер клеем. Данный индикатор имеет ограничение по измерению тока до 9,99 А, что явно маловато для данного блока питания. Кроме как функций индикации модуль измерения тока и напряжения больше никак не задействован относительно основной платы устройства. Функционально подойдет любой измерительный модуль на замену.

Схема регулировки напряжения и тока построена на четырех операционных усилителях (используется LM324 – четыре операционных усилителя в одном корпусе). Для питания этой микросхемы стоит использовать фильтр по питания на элементах L1 и C1, C2. Настройка схемы заключается в подборе элементов, помеченных звездочкой для задания диапазонов регулирования. Схема регулировки собрана на отдельной печатной плате. Кроме того, для более плавной регулировки по току можно использовать несколько переменных резисторов соединенных соответствующим образом.

Для задания частоты преобразователя необходимо подобрать номинал конденсатора C3 и номинал резистора R3. На схеме указана небольшая табличка с расчетными данными. Слишком большая частота может увеличить потери на силовых транзисторах при переключении, поэтому слишком увлекаться не стоит, оптимально, на мой взгляд, использовать частоту 70-80 кГц, а то и меньше.

Теперь о параметрах намотки или перемотки трансформатора Tr2. Основу я также использовал от старых блоков питания компьютера. Если большой ток и большое напряжения вам не нужны, то можно такой трансформатор не перематывать, а использовать готовый, соединив обмотки соответствующим образом. Однако если необходим больший ток и напряжение, то трансформатор необходимо перемотать, чтобы получить более лучший результат. Прежде всего придется разобрать сердечник, который у нас имеется. Это самый ответственный момент, так как ферриты достаточно хрупкие, а ломать их не стоит, иначе все на мусор. Итак, чтобы разобрать сердечник, его необходимо нагреть, так как для склеивания половинок обычно изготовитель использует эпоксидную смолу, которая при нагреве размягчается. Открытые источники огня использовать не стоит. Хорошо подойдет электронагревательное оборудование, в бытовых условиях – это, например электроплита. При нагреве аккуратно разъединяем половинки сердечника. После остывания снимаем все родные обмотки. Теперь нужно рассчитать необходимое количество витков первичной и вторичной обмоток трансформатора. Для этого можно использовать программу ExcellentIT(5000), в которой задаем необходимые нам параметры преобразователя и получаем расчет количества витков относительно используемого сердечника. Далее после намотки сердечник трансформатор необходимо обратно склеить, желательно также использовать высокопрочный клей или эпоксидную смолу. При покупке нового сердечника потребность в склейке может отсутствовать, так как часто половинки сердечника могут стягиваться металлическими скобами и болтиками. Обмотки необходимо наматывать плотно, чтобы исключить акустический шум при работе устройства. По желанию обмотки можно заливать какими-нибудь парафинами.

Печатные платы проектировались для корпуса Z4A. Сам корпус подвергается небольшим доработкам, чтобы обеспечить циркуляцию воздуха для охлаждения. Для этого по бокам и сзади сверлится несколько отверстий, а сверху прорезаем отверстие для вентилятора. Вентилятор дует вниз, лишний воздух уходит через отверстия. Можно вентилятор расположить и наоборот, чтоы он высасывал воздух из корпуса. По факту охлаждение вентилятором редко когда понадобится, к тому же даже при больших нагрузках элементы схемы сильно не греются.

Также подготавливаются лицевые панели. Индикаторы напряжения и тока используются с применением семисегментных индикаторов, а в качестве светофильтра для этих индикаторов используется металлизированная антистатическая пленка, наподобие той, в которую упаковывают радиоэлементы с пометкой чувствительности к электростатике. Можно также использовать полупрозрачную пленку, которую клеят на оконные стекла, либо тонирующую пленку для автомобилей. Набор элементов на лицевой панели спереди и сзади можно компоновать по любому вкусу. В моем случае сзади разъем для подключения к розетке, отсек предохранителя и выключатель. Спереди – индикаторы тока и напряжения, светодиоды индикации стабилизации тока (красный) и стабилизации напряжения (зеленый), ручки переменных резисторов для регулировки тока и напряжения и быстрозажимной разъем, к которому подключено выходное напряжение.

При правильной сборке блок питания нуждается только в подстройке диапазонов регулирования.

Защита по току (стабилизация по току) работает следующим образом: при превышении установленного тока на микросхему TL494 подается сигнал о снижении напряжения – чем меньше напряжение, тем меньше ток. При этом на лицевой панели загорается красный светодиод, сигнализирующий о превышении установленного тока, либо о коротком замыкании. В нормальном режиме стабилизации напряжения горит зеленый светодиод.

Основные характеристики импульсного лабораторного блока питания зависят в основном от применяемой элементной базы, в данном варианте характеристики следующие:

  • Входное напряжение – 220 вольт переменного тока
  • Выходное напряжение – от 0 до 30 вольт постоянного тока
  • Выходной ток составляет более 15 А (фактически тестированное значение)
  • Режим стабилизации напряжения
  • Режим стабилизации тока (защита от короткого замыкания)
  • Индикация обоих режимов светодиодами
  • Малые габариты и вес при большой мощности
  • Регулировка ограничения тока и напряжения

Подводя итог, можно отметить, что лабораторный блок питания получился достаточно качественный и мощный. Это позволяет использовать данный вариант блока питания как для тестирования каких-то своих схем, так и вплоть до зарядки автомобильных аккумуляторов. Стоит отметить также то, что емкости на выходе стоят достаточно большие, поэтому коротких замыканий лучше не допускать, так как разряд конденсаторов с большой вероятностью может вывести схему из строя (ту, к которой подключаемся), однако без этой емкости выходное напряжение будет хуже – возрастут пульсации. Это особенность именно импульсного блока, в аналоговых блока питания выходная емкость не превышает 10 мкФ как правило в силу своей схемотехники. Таким образом, получаем универсальный лабораторный импульсный блок питания способный работать в широком диапазоне нагрузок практически от нуля до десятков ампер и вольт. Блок питания прекрасно зарекомендовал себя как при питании небольших схем при тестировании (но тут защита от КЗ поможет мало из-за большой выходной емкости) с потреблением в миллиамперы, так и в применении в ситуациях, кода необходима большая выходная мощность за время моего скудного опыта в области электроники.

Этот лабораторный блок питания я сделал около 4 лет назад, когда только начинал делать первые шаги в электронике. До настоящего времени ни одной поломку с учетом того, что работал часто далеко за пределами 10 ампер (зарядка автомобильных аккумуляторов). При описании за счет давнего срока изготовления мог что-то упустить, вопросы, замечания складывайте в комментариях.

По для расчета трансформатора:

Прилагаю к статье печатные платы (вольтметр и амперметр сюда не входят - можно применять абсолютно любые).

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 ШИМ контроллер

TL494

1 В блокнот
IC2 Операционный усилитель

LM324

1 В блокнот
VR1 Линейный регулятор

L7805AB

1 В блокнот
VR2 Линейный регулятор

LM7905

1 В блокнот
T1, T2 Биполярный транзистор

C945

2 В блокнот
T3, T4 Биполярный транзистор

MJE13009

2 В блокнот
VDS2 Диодный мост MB105 1 В блокнот
VDS1 Диодный мост GBU1506 1 В блокнот
D3-D5, D8, D9 Выпрямительный диод

1N4148

5 В блокнот
D6, D7 Выпрямительный диод

FR107

2 В блокнот
D10, D11 Выпрямительный диод

FR207

2 В блокнот
D12, D13 Выпрямительный диод

FR104

2 В блокнот
D15 Диод Шоттки F20C20 1 В блокнот
L1 Дроссель 100 мкГн 1 В блокнот
L2 Синфазный дроссель 29 мГн 1 В блокнот
L3, L4 Дроссель 10 мкГн 2 В блокнот
L5 Дроссель 100 мкГн 1 на желтом кольце В блокнот
L6 Дроссель 8 мкГн 1 В блокнот
Tr1 Импульсный трансформатор EE16 1 В блокнот
Tr2 Импульсный трансформатор EE28 - EE33 1 ER35 В блокнот
Tr3 Трансформатор BV EI 382 1189 1 В блокнот
F1 Предохранитель 5 А 1 В блокнот
NTC1 Терморезистор 5.1 Ом 1 В блокнот
VDR1 Варистор 250 В 1 В блокнот
R1, R9, R12, R14 Резистор

2.2 кОм

4 В блокнот
R2, R4, R5, R15, R16, R21 Резистор

4.7 кОм

6 В блокнот
R3 Резистор

5.6 кОм

1 подбирать исходя из необходимой частоты В блокнот
R6, R7 Резистор

510 кОм

2 В блокнот
R8 Резистор

1 МОм

1 В блокнот
R13 Резистор

1.5 кОм

1 В блокнот
R17, R24 Резистор

22 кОм

2 В блокнот
R18 Резистор

1 кОм

1 В блокнот
R19, R20 Резистор

22 Ом

2 В блокнот
R22, R23 Резистор

1.8 кОм

2 В блокнот
R27, R28 Резистор

2.2 Ом

2 В блокнот
R29, R30 Резистор

470 кОм

2 1-2 Вт В блокнот
R31 Резистор

100 Ом

1 1-2 Вт В блокнот
R32, R33 Резистор

15 Ом

2 В блокнот
R34 Резистор

1 кОм

1 1-2 Вт В блокнот
R10, R11 Переменный резистор 10 кОм 2 можно 3 или 4 использовать В блокнот
R25, R26 Резистор

0.1 Ом

2 шунты, мощность зависит от выходной мощности БП В блокнот
C1, C8, C27, C28, C30, C31 Конденсатор 0.1 мкФ 7 В блокнот
C2, C9, C22, C25, C26, C34, C35 Электролитический конденсатор 47 мкФ 7 В блокнот
C3 Конденсатор 1 нФ 1 пленочный

Здравствуйте, предлагаю обзор импульсного регулируемого блока питания Wanptek KPS305D. Выходное напряжение: 0...30 В
Выходной ток: 0...5 А
Сразу скажу, блок питания ни плох, ни хорош, так, средненький. Конечно же не обошлось и без «косяков».
В обзоре подробные фото, внутренности, тесты…

Мотивация:

У меня есть лабораторный регулируемый блок питания ещё советского производства с выходным напряжением 0...15В и током 0...1А. И в принципе, мне его почти всегда хватало. Но иногда, при тестировании различных электронных устройств, появляется необходимость в бОльших токах и напряжениях. Вот я и решил взять на обзор данный БП, чтобы убить 2 зайцев: и обзор написать и БП бесплатно получить. Скажу честно, если бы я его купил, то не стал бы так подробно изучать и анализировать. Но для обзора анализ важен. Поэтому вперед!

Упаковка и комплектация:

Коробка картонная с монохромной полиграфией. Внутри блок питания (БП) в полиэтиленовом пакете с вставками из вспененного полиэтилена.

В комплекте:
- блок питания;
- инструкция на английском языке;
- выходной кабель с зажимами «крокодил»;
- кабель питания с «евровилкой».




Герой обзора:

Блок питания представляет из себя параллелепипед размером 220х165х81 мм. Передняя часть корпуса выполнена из белого пластика, остальной корпус металлический.


На передней части присутствуют:
- светодиодный индикатор тока и напряжения, а также режимов работы: регулировка напряжения или ограничение тока;
- 4 регулятора: напряжение (грубо, плавно) и ток (грубо, плавно);
- выключатель питания;
- выходные клеммы.
На задней части расположены:
- щели для вентилятора охлаждения;
- переключатель входного питания (110/220 В);
- гнездо подключения питающего кабеля с отсеком для предохранителя.
На нижней части находятся 4 резиновые ножки и вентиляционные щели.

Разборка:

Перед включением в сеть различного рода устройств, особенно китайского производства, я стараюсь сначала убедиться, что подача питания безопасна и не приведёт к каким-либо нехорошим последствиям. Поэтому и здесь я сначала решил рассмотреть внутренности.
Для вскрытия корпуса необходимо открутить 8 винтов и снять верхнюю крышку.

К дну корпуса прикручена алюминиевая пластина толщиной 3 мм, которая выполняет роль радиатора. На этой пластине закреплена плата с силовыми элементами. Еще одна плата установлена в переднюю панель и соединена с первой гибким плоским шлейфом.Практически все провода подключены к платам через разъёмы. Это несомненно удобно, но не всегда хорошо, но об этом ниже.
Рассмотрим подробно основную плату:
Первое, что мне бросилось в глаза - большое количество моточных элементов: 3 трансформатора и 3 дросселя, а именно:
- входной помехоподавляющий дроссель;
- силовой трансформатор;
- трансформатор вспомогательного источника питания;
- развязывающий трансформатор управления силовыми транзисторами;
- дроссель инвертора;
- выходной помехоподавляющий дроссель.
Второе, что бросилось в глаза - кривость рук сборщика, который распаивал силовые транзисторы на радиаторе. Ну не знаю, я вроде бы далеко не перфекционист, но смотреть на такое мне тяжело. Ничего, поправлю.
Итак, пройдёмся по основным узлам.
Начнём с входного фильтра . Схема фильтра не идеальна, но он есть и это уже плюс.

Состоит фильтр из:
- термистора, который ограничивает ток заряда электролитических конденсаторов;
- двухобмоточного дросселя;
- конденсаторов до и после дросселя;
- и двух конденсаторов на «корпус».
Далее установлен диодный мост и 2 электролитических конденсатора, включенных последовательно.
Схема входного фильтра и выпрямителя следующая (я поленился указывать номиналы):
Коммутатор на схеме это переключатель входного напряжения. При питании от сети 220 вольт, коммутатор должен быть разомкнут.
Идём дальше по функциональным модулям. Ввиду того, что блок питания регулируемый, да ещё и со светодиодными индикаторами, которые требуют дополнительного питания, то становится ясна необходимость в отдельном источнике питания собственных нужд . И такой источник питания имеется на плате, более того, он даже импульсный и собран этот источник на микросхеме и отдельном трансформаторе.

Идём дальше. Посмотрим на силовые транзисторы :

Ну ужас, без слёз смотреть на это невозможно.
Открутим плату от радиатора, для чего необходимо удалить 4 винта по углам платы и 3 крепёжных винта с транзисторов.


На обратной стороне платы, кроме криво припаянных транзисторов и термистора, других элементов нет. При ближайшем рассмотрении оказалось, что транзисторов всего два, это n-канальные полевые транзисторы с изолированным затвором (средний и левый), а правый это 2 выпрямительных диода в корпусе ТО-220.
Термистор нужен для измерения температуры радиатора и включения вентилятора при перегреве.
Между транзисторами можно заметить «доработку». Печатная плата была разведена с ошибкой, дорожку перерезали и припаяли перемычку. Это говорит о достаточно мелкосерийном производстве данных БП. Т.к. дешевле оказывается вручную дорабатывать плату, чем запустить изготовление исправленных печатных плат.
Для управления силовыми транзисторами используется развязывающий трансформатор :
Похоже что все трансформаторы пропитаны лаком. Хотя, возможно, они лаком просто покрыты.
Единственный модуль, оставшийся без внимания на данной плате - выходные выпрямитель и фильтр . Выпрямителя я слегка коснулся при рассмотрении силовых транзисторов. Диодная сборка на радиаторе в корпусе ТО-220 и есть выходной выпрямитель. Выходной фильтр состоит из 4 электролитических конденсаторов, дросселя и двух шунтов.
Схема выходных выпрямителя, фильтра и шунтов следующая:

На этом основные блоки силовой платы оказались рассмотренными. Чего я не нашёл на этой плате? Нет ШИМ контроллера. Оказалось, что он находится на плате управления и индикации.
Итак, вот плата управления и индикации :
Плата и функционально и физически разбита на 2 части: индикации и управления и ШИМ контроллера. ШИМ контроллер оказался одним из самых распространённых . Такие контроллеры широко используются, например, в компьютерных блоках питания.
Часть платы, отвечающая за управление и индикацию собрана с применением 8 разрядного микроконтроллера , для управления 7 сегментными светодиодными индикаторами используется специализированный контроллер .
Ну вот, с рассматриванием «потрохов» закончили.

Доработка:

Ну не могу я смотреть на эти кривые транзисторы. А раз так, я их выпрямил.
Ещё я отключил от платы переключатель входного напряжения. Так, на всякий случай.

Также мне не нравится то, что на одном радиаторе установлены и силовые транзисторы и выходной диодный мост. Да, и транзисторы и мост имеют изолированный корпус, но я рекомендую установить теплопроводящую изолирующую прокладку.

Тестирование:

Для начала проверим точность измерения напряжения и тока:

С точностью всё в полном порядке.
Посмотрим на уровень пульсаций. Для этого к выходу БП дополнительно был подключен осциллограф:
При малом токе потребления пульсаций почти нет, но вот при увеличении нагрузки, пульсации тоже возрастают. Ниже осциллограммы при токе 1А и 5А соответственно:

При 1 ампере амплитуда пульсаций составляет 80 мВ, при 5 амперах увеличивается до 150 мВ.
Это не есть плохо, но и не хорошо. Так, средненько.

Итог:

Блок питания работает и выдаёт заявленные 30 вольт и 5 Ампер. Пользоваться данным БП вполне можно, но лучше перед использованием доработать: поставить теплопроводящую изолирующую прокладку между силовыми транзисторами и радиатором. Также к минусам можно отнести неряшливый монтаж (криво установленные транзисторы), приличный уровень пульсаций.
К плюсам можно отнести точность индикации тока и напряжения во всём диапазоне, использование стандартных элементов (ремонтопригодность).
В общем блок питания далеко не идеальный, такой середнячок, для домашнего использования пойдёт. У меня не было зарядного устройства для автомобильного аккумулятора, теперь оно есть:)

Удачи! Надеюсь информация пригодится.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +15 Добавить в избранное Обзор понравился +41 +66

С тех пор как возобновил свою радиолюбительскую деятельность, меня часто посещала мысль о качественном и универсальном . Имевшийся в наличии и произведенный лет 20 назад блок питания имел лишь два напряжения на выходе - 9 и 12 вольт при токе порядка одного Ампера. Остальные необходимые в практике напряжения приходилось «выкручивать» добавляя разные стабилизаторы напряжения, а для получения напряжений выше 12 Вольт - использовать трансформатор и разные преобразователи.

Такая ситуация порядком надоела и стал присматривать схему лабораторника в интернете для повторения. Как оказалось многие из них это одна и та же схема на операционных усилителях, но в разных вариациях. При этом на форумах обсуждения этих схем на тему их работоспособности и параметров напоминали тему диссертаций. Повторять и тратиться на сомнительные схемы не хотелось, и во время очередного похода на Алиэкспресс вдруг набрел на набор конструктора линейного блока питания с вполне приличными параметрами: регулируемым напряжением от 0 до 30 Вольт и током до 3 Ампер. Цена в 7,5 $, делала процесс самостоятельной покупки компонентов, разработки и травлением платы просто бессмысленным. В итоге, получил по почте вот такой набор:

Не взирая на цену набора, качество изготовления платы могу назвать отменным. В комплекте даже оказалось два лишних конденсатора на 0,1 мкф. Бонус - пригодятся)). Все что нужно сделать самому - это «включив режим внимания», расставить компоненты по своим местам и спаять. Китайские товарищи позаботились о том, чтобы перепутать, что либо смог только человек, впервые узнавший о батарейке и лампочке - на плату нанесена шелкография с номиналами компонентов. В финале получается вот такая плата:

Характеристики лабораторного блока питания

  • входное напряжение: 24 В переменного тока;
  • выходное напряжение: от 0 до 30 В (регулируемое);
  • выходной ток: 2 мА - 3 А (регулируемый);
  • пульсации выходного напряжения: менее 0.01%
  • размер платы 84 х 85 мм;
  • защита от короткого замыкания;
  • защита по превышению установленной величины тока.
  • О превышении установленного тока сигнализирует светодиод.

Для получения полноценного блока следует добавить лишь три компонента - трансформатор с напряжением на вторичной обмотке 24 вольта при 220 вольтах на входе (важный момент, о котором подробно ниже) и током 3,5-4 А, радиатор для выходного транзистора и кулер на 24 Вольта для охлаждения радиатора при большом токе нагрузки. Кстати, в интернете нашлась и схема данного блока питания:

Из основных узлов схемы можно выделить:

  • диодный мост и фильтрующий конденсатор;
  • регулирующий узел на транзисторах VT1 и VT2;
  • узел защиты на транзисторе VT3 отключает выход, пока питание операционных усилителей не будет нормальным
  • стабилизатор питания вентилятора на микросхеме 7824;
  • на элементах R16, R19, C6, C7, VD3, VD4, VD5 построен узел формирования отрицательного полюса питания операционных усилителей. Наличие этого узла обуславливает питание всей схемы именно переменным током от трансформатора;
  • выходные конденсатор С9 и защитный диод VD9.

Отдельно нужно остановиться на некоторых компонентах примененных в схеме:

  • выпрямительные диоды 1N5408, выбраны впритык - максимальный выпрямленный ток 3 Ампера. И хоть диоды в мосте работают попеременно, все же не будет лишним заменить их более мощными, например диодами Шотки на 5 А;
  • стабилизатор питания вентилятора на микросхеме 7824 выбран на мой взгляд не совсем удачно - под рукой у многих радиолюбителей наверняка найдутся вентиляторы на 12 вольт от компьютеров, а вот куллеры на 24 В встречаются гораздо реже. Покупать такой не стал, решив заменить 7824 на 7812, но в процессе испытаний БП отказался от этой идеи. Дело в том, что при входном переменном напряжении в 24 В, после диодного моста и фильтрующего конденсатора получаем 24*1,41=33,84 Вольта. Микросхема 7824 прекрасно справится с задачей рассеивания лишних 9, 84 Вольта, а вот 7812 приходится тяжко, рассеивая в тепло 21,84 Вольта.

Кроме того, входное напряжение для микросхем 7805-7818 регламентировано производителем на уровне 35 Вольт, для 7824 на уровне 40 Вольт. Таким образом, в случае простой замены 7824 на 7812, последняя будет работать на грани. Вот ссылка на даташит .

Учитывая вышеприведенное, имевшийся в наличии кулер на 12 Вольт подключил через стабилизатор 7812, запитав ее от выхода штатного стабилизатора 7824. Таким образом, схема питания кулера получилась хоть и двухступенчатой, но надежной.

Операционные усилители TL081, согласно даташита требуют двуполярное питание +/- 18 Вольт - в целом 36 Вольт и это максимальное значение. Рекомендуемое +/- 15.

И вот тут начинается самое интересное относительно переменного входного напряжения величиной 24 Вольта! Если взять трансформатор, который при 220 В на входе, выдает 24 В на выходе, то опять же после моста и фильтрующего конденсатора получаем 24*1,41=33,84 В.

Таким образом, до достижения критической величины остается всего 2,16 Вольта. При увеличении напряжения в сети до 230 Вольт (а такое бывает в нашей сети), с фильтрующего конденсатора снимем уже 39,4 Вольта постоянного напряжения, что приведет к гибели операционных усилителей.

Выхода тут два: либо заменить операционные усилители другими, с более высоким допустимым напряжением питания, либо уменьшить количество витков во вторичной обмотке трансформатора. Я пошел по второму пути, подобрав количество витков во вторичной обмотке на уровне 22-23 Вольта при 220 В на входе. На выходе БП получил 27,7 Вольта, что меня вполне устроило.

В качестве радиатора для транзистора D1047 нашел в закромах радиатор процессора. На нем же закрепил стабилизатор напряжения 7812. Дополнительно установил плату контроля оборотов вращения вентилятора. Ею со мной поделился донорский компьютерный блок питания ПК. Терморезистор закрепил между ребер радиатора.

При токе в нагрузке до 2,5 А вентилятор вращается на средних оборотах, при повышении тока до 3 А в течении длительного времени вентилятор включается на полую мощность и снижает температуру радиатора.

Индикатор цифровой для блока

Для визуализации показаний напряжения и тока в нагрузке применил вольтамперметр DSN-VC288, который обладает следующими характеристиками:

  • диапазон измерений: 0-100 В 0-10A;
  • рабочий ток: 20mA;
  • точность измерения: 1%;
  • дисплей: 0.28 " (Два цвета: синий (напряжение), красный (сила тока);
  • минимальный шаг измерения напряжения: 0,1 В;
  • минимальный шаг измерения силы тока: 0,01 A;
  • рабочая температура: от -15 до 70 °С;
  • размер: 47 х 28 х 16 мм;
  • рабочее напряжение, необходимое для работы электроники ампервольтметра: 4,5 - 30 В.

Учитывая диапазон рабочего напряжения существует два способа подключения:

  • Если источник измеряемого напряжения работает в диапазоне от 4,5 до 30 Вольт , то тогда схема подключения выглядит так:

  • Если источник измеряемого напряжения работает в диапазоне 0-4,5 В или выше 30 Вольт , то до 4,5 Вольт ампервольтметр не запустится, а при напряжении более 30 Вольт он просто выйдет из строя, во избежание чего следует воспользоваться следующей схемой:

В случае с данным блоком питания, напряжение для питания ампервольтметра есть из чего выбрать. В блоке питания есть два стабилизатора - 7824 и 7812. До 7824 длина провода получалась короче, поэтому запитал прибор от него, подпаяв провод к выходу микросхемы.

О проводах из комплекта

  • провода трехконтактного разъема тонкие и выполнены проводом 26AWG - толще тут и не нужно. Цветная изоляция интуитивно понятна - красный это питание электроники модуля, черный это масса, желтый — измерительный провод;
  • провода двухконтрактного разъема - это провода токоизмерительные и выполнены толстым проводом 18AWG.

При подключении и сравнении показаний с показаниями мультиметра, расхождения составили 0,2 Вольта. Производитель предусмотрел подстроечные сопротивления на плате для калибровки показаний напряжения и тока, что является большим плюсом. В некоторых экземплярах наблюдается отличные от нуля показания амперметра без нагрузки. Оказалось, что решить проблему можно сбросом показаний амперметра, как показано ниже:

Картинка из интернета, потому прошу простить за грамматические ошибки в надписях. В общем со схемотехникой закончили -