Какие бывают типы разрывов. Как исследовать функцию на непрерывность

Определение точек разрыва функции и их видов является продолжением темы непрерывности функции . Наглядное (графическое) объяснение смысла точек разрыва функции даётся так же в контрасте с понятием непрерывности. Научимся находить точки разрыва функции и определять их виды. И помогут нам в этом наши верные друзья - левый и правый пределы, обобщённо называемые односторонними пределами. Если у кого-то есть страх перед односторонними пределами, то скоро развеем его.

Точки на графике, которые не соединены между собой, называются точками разрыва функции . График такой функции, терпящей разрыв в точке x=2 - - на рисунке ниже.

Обобщением вышесказанного является следующее определение. Если функция не является непрерывной в точке , то она имеет в этой точке разрыв а сама точка называется точкой разрыва . Разрывы бывают первого рода и второго рода .

Для того, чтобы определять виды (характер) точек разрыва функции нужно уверенно находить пределы , поэтому нелишне открыть в новом окне соответствующий урок. Но в связи с точками разрыва у нас появляется кое-что новое и важное - односторонние (левый и правый) пределы. Обобщённо они записываются (правый предел) и (левый предел). Как и в случае с пределом вообще, для того, чтобы найти предел функции, нужно в выражение функции вместо икса подставить то, к чему стремится икс. Но, возможно, спросите вы, чем же будут отличаться правый и левый пределы, если в случае правого к иксу хотя что-то и прибавляется, но это что-то - ноль, а в случае левого из икса что-то вычитается, но это что-то - тоже ноль? И будете правы. В большинстве случаев.

Но в практике поиска точек разрыва функции и определения их вида существует два типичных случая, когда правый и левый пределы не равны:

  • у функции существует два или более выражений, зависящих от участка числовой прямой, к которой принадлежит икс (эти выражения обычно записываются в фигурных скобках после f (x )= );
  • в результате подстановки того, к чему стремится икс, получается дробь, в знаменателе которой остаётся или плюс ноль (+0) или минус ноль (-0) и поэтому такая дробь означает либо плюс бесконечность, либо минус бесконечность, а это совсем разные вещи.

Точки разрыва первого рода

Точка разрыва первого рода: у функции существуют как конечный (т. е. не равный бесконечности) левый предел, так и конечный правый предел, но функция не определена в точке или левый и правый пределы различны (не равны).

Точка устранимого разрыва первого рода. Левый и правый пределы равны. При этом существует возможность доопределить функцию в точке. Доопределить функцию в точке, говоря просто, значит обеспечить соединение точек, между которыми находится точка, в которой найдены равные друг другу левый и правый пределы. При этом соединение должно представлять собой лишь одну точку, в которой должно быть найдено значение функции.

Пример 1. Определить точку разрыва функции и вид (характер) точки разрыва.

Точки разрыва второго рода

Точка разрыва второго рода: точка, в которой хотя бы один из пределов (левый или правый) - бесконечный (равен бесконечности).

Пример 3.

Решение. Из выражения степени при e видно, что в точке функция не определена. Найдём левый и правый пределы функции в этой точке:

Один из пределов равен бесконечности, поэтому точка - точка разрыва второго рода. График функции с точкой разрыва - под примером.

Нахождение точек разрыва функции может быть как самостоятельной задачей, так и частью Полного исследования функции и построения графика .

Пример 4. Определить точку разрыва функции и вид (характер) точки разрыва для функции

Решение. Из выражения степени при 2 видно, что в точке функция не определена. Найдём левый и правый пределы функции в этой точке.

Устранимый разрыв.

Определение . Точка a называется точкой устранимого разрыва функции y=f(x) , если предел функции f(x) в этой точке существует, но в точке a функция f(x) либо не определена, либо имеет частное значение f(a) , отличное от предела f(x) в этой точке.

Пример . Например, функция

имеет в точке x=0 устранимый разрыв. Действительно, предельное значение этой функции в точке х=0 равно 1. Частное же значение равно 2.

Если функция f(x) имеет в точке a устранимый разрыв, то этот разрыв можно устранить, не изменяя при этом значений функции в точках, отличных от a . Для этого достаточно положить значение функции в точке a равным ее предельному значению в этой точке. Так, в рассмотренном выше примере достаточно положить f(0)=1 и тогда , т.е. функция f(x) станет непрерывной в точке x=0 .

Разрыв первого рода.

Определение . Точка a называется точкой разрыва, первого рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу правый и левый пределы

Приведем некоторые примеры.

Пример . Функция y=sgn x имеет в точке x=0 разрыв первого рода. Действительно, и, таким образом, эти пределы не равны между собой.

Пример . Функция , определенная всюду, кроме точки x=1 , имеет в точке x=1 разрыв первого рода. В самом деле, .

Разрыв второго рода.

Определение . Точка a называется точкой разрыва второго рода, если в этой точке функция f(x) не имеет по крайней мере одного из односторонних пределов или если хотя бы один из односторонних пределов бесконечен.

Пример . Функция f(x)=tg x , очевидно, имеет разрыв второго рода в каждой из точек x k =π/2+π k , k=0, ± 1, ± 2,… , ибо в каждой такой точке

Пример . Функция имеет разрыв второго рода в точке x=0 , ибо в этой точке у нее не существует ни правого, ни левого пределов.

Непрерывность функции на отрезке

Определение . Функция, определенная на отрезке и непрерывная в каждой его точке, называется непрерывной на этом отрезке.

При этом под непрерывность в точке a понимается непрерывность справа, а под непрерывностью в точке b - непрерывность слева.

Будем говорить, что функция y=f(x) , определенная на множестве {x} достигает на нем своей верхней (нижней) грани , если существует такая точка x 0 ∈{x} , что f(x 0)=β (f(x 0)=α ).

Теорема [Вейерштрасса] . Всякая непрерывная на отрезке функция ограничена и достигает на нем своей верхней грани и своей нижней грани.

Теорема [Больцано-Коши] . Если функция y=f(x) непрерывна на отрезке и f(a)=A , f(b)=B , то для любого C , заключенного между A и B , существует такая точка ξ∈ , что f(ξ)=C .

Другими словами, непрерывная на отрезке функция, принимая какие-либо два значения, принимает и любое лежащее между ними значение.

Следствие . Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке существует хотя бы одна точка, в которой функция обращается в нуль.

Следствие . Пусть функция y=f(x) непрерывна на отрезке и , . Тогда функция f(x) принимает все значения из отрезка и только эти значения.

Таким образом, множество всех значений функции, заданной и непрерывной на некотором отрезке, представляет собой также отрезок.

Непрерывность функции в точке. Функция y = f (x ) называется непре-

рывной в точке x 0 , если:

1) эта функция определена в некоторой окрестности точки x 0 ;

2) существует предел lim f (x ) ;

→ x 0

3) этот предел равен значению функции в точке x 0 , т.е. limf (x )= f (x 0 ) .

x→ x0

Последнее условие равносильно условию lim

y = 0 , гдеx = x − x 0 – при-

x→ 0

ращение аргумента, y = f (x 0 +

x )− f (x 0 ) – приращение функции, соответст-

вующее приращению аргумента

x , т.е. функция

f (x ) непрерывна в точкеx 0

тогда и только тогда, когда в этой точке бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Односторонняя непрерывность. Функцияy = f (x ) называется непрерыв-

ной слева в точкеx 0 , если она определена на некотором полуинтервале(a ;x 0 ]

и lim f (x )= f (x 0 ) .

x→ x0 − 0

Функция y = f (x ) называется непрерывнойсправа в точкеx 0 , если она оп-

ределена на некотором полуинтервале [ x 0 ;a ) и limf (x )= f (x 0 ) .

x→ x0 + 0

Функция y = f (x )

непрерывна в точке x 0

тогда и только тогда, когда она

непрерывна

lim f (x )= limf (x )= limf (x )= f (x 0 ) .

x→ x0 + 0

x→ x0 − 0

x→ x0

Непрерывность функции на множестве. Функция y = f (x ) называется

непрерывной на множестве X , если она является непрерывной в каждой точкеx этого множества. При этом если функция определена в конце некоторого промежутка числовой оси, то под непрерывностью в этой точке понимается непрерывность справа или слева. В частности, функцияy = f (x ) называетсяне-

прерывной на отрезке [ a; b] , если она

1) непрерывна в каждой точке интервала (a ;b ) ;

2) непрерывна справа в точке a ;

3) непрерывна слева в точке b .

Точки разрыва функции. Точкаx 0 , принадлежащая области определения функцииy = f (x ) , или являющаяся граничной точкой этой области, называется

точкой разрыва данной функции , еслиf (x ) не является непрерывной в этой точке.

Точки разрыва подразделяются на точки разрыва первого и второго рода:

1) Если существуют конечные пределы lim f (x )= f (x 0 − 0) и

x→ x0 − 0

f (x )= f (x 0 + 0) , причем не все три числаf (x 0 − 0) ,f (x 0 + 0) ,

f (x 0 ) равны

x→ x0 + 0

между собой, то x 0

называется точкой разрыва I рода.

В частности, если левый и правый пределы функции в точке x 0

равны меж-

собой, но

не равны значению функции в этой точке:

f (x0 − 0) = f(x0 + 0) = A≠ f(x0 ) , то x 0 называется точкой устранимого разрыва.

В этом случае, положив f (x 0 )= A , можно видоизменить функцию в точкеx 0

так, чтобы она стала непрерывной (доопределить функцию по непрерывности ). Разностьf (x 0 + 0)− f (x 0 − 0) называетсяскачком функции в точке x 0 .

Скачок функции в точке устранимого разрыва равен нулю.

2) Точки разрыва, не являющиеся точками разрыва первого рода, называются точками разрыва II рода . В точках разрыва II рода не существует или бесконечен хотя бы один из односторонних пределовf (x 0 − 0) иf (x 0 + 0) .

Свойства функций, непрерывных в точке.

f (x)

и g (x ) непрерывны в точкеx 0 , то функции

f (x )± g (x ) ,

f (x )g (x ) и

f (x)

(где g (x )≠ 0) также непрерывны в точкеx .

g(x)

2) Если функция u (x ) непрерывна в точкеx 0 , а функцияf (u ) непрерывна

в точке u 0 = u (x 0 ) , то сложная функцияf (u (x )) непрерывна в точкеx 0 .

3) Все основные элементарные функции (c , x a ,a x , loga x , sinx , cosx , tgx , ctgx , secx , cosecx , arcsinx , arccosx , arctgx , arcctgx ) непрерывны в каж-

дой точке своих областей определения.

Из свойств 1)–3) следует, что все элементарные функции (функции, полученные из основных элементарных функций с помощью конечного числа арифметических операций и операции композиции) также непрерывны в каждой точке своих областей определения.

Свойства функций, непрерывных на отрезке.

1) (теорема о промежуточных значениях) Пусть функция f(x) определе-

на и непрерывна на отрезке [ a ;b ] . Тогда для любого числаC , заключенного

между числами f (a ) иf (b ) , (f (a )< C < f (b )) найдется хотя бы одна точкаx 0 [ a ;b ] , такая, чтоf (x 0 )= C .

2) (теорема Больцано – Коши

рывна на отрезке [ a ;b ] и принимает на его концах значения различных знаков.

Тогда найдется хотя бы одна точка x 0 [ a ;b ] , такая, чтоf (x 0 )= 0 .

3) (1-я теорема Вейерштрасса ) Пусть функцияf (x ) определена и непре-

рывна на отрезке [ a ;b ] . Тогда эта функция ограничена на этом отрезке.

4) (2-я теорема Вейерштрасса ) Пусть функцияf (x ) определена и непре-

рывна на отрезке

[ a ;b ] . Тогда эта функция достигает на отрезке[ a ;b ]

наибольшего

наименьшего

значений, т.е.

существуют

x1 , x2 [ a; b] ,

для любой

точки x [ a ;b ]

справедливы

неравенства

f (x 1 )≤ f (x )≤ f (x 2 ) .

Пример 5.17. Пользуясь определением непрерывности, доказать, что функцияy = 3x 2 + 2x − 5 непрерывна в произвольной точкеx 0 числовой оси.

Решение: 1 способ: Пусть x 0 – произвольная точка числовой оси. Вы-

числим сначала предел функции f (x ) приx → x 0 , применяя теоремы о пределе суммы и произведения функций:

lim f (x )= lim(3x 2 + 2x − 5)= 3(limx )2 + 2 limx − 5= 3x 2

− 5.

x→ x0

x→ x0

x→ x0

x→ x0

Затем вычисляем значение функции в точке x :f (x )= 3x 2

− 5 .

Сравнивая полученные результаты, видим,

lim f (x )= f (x 0 ) , что согласно

x→ x0

определению и означает непрерывность рассматриваемой функции в точке x 0 .

2 способ: Пусть

x – приращение аргумента в точкеx 0 . Найдем соот-

ветствующее

приращение

y = f(x0 + x) − f(x0 ) =

3(x + x )2 + 2(x + x )− 5− (3x 2 + 2x − 5)

6 x x+ (x) 2

2x = (6x + 2)x + (x )2 .

Вычислим теперь предел приращения функции, когда приращение аргу-

стремится

y = lim (6x + 2)

x + (x )2 = (6x + 2) lim

x + (limx )2 = 0 .

x→ 0

x→ 0

x→ 0

x→ 0

Таким образом, lim y = 0 , что и означает по определению непрерывность

x→ 0

функции для любого x 0 R .

Пример 5.18. Найти точки разрыва функцииf (x ) и определить их род. В

случае устранимого разрыва доопределить функцию по непрерывности:

1) f (x ) = 1− x 2 приx < 3;

5x приx ≥ 3

2) f (x )= x 2 + 4 x + 3 ;

x + 1

f (x) =

x4 (x− 2)

f (x )= arctg

(x − 5)

Решение: 1) Областью определения данной функции является вся число-

вая ось (−∞ ;+∞ ) . На интервалах(−∞ ;3) ,(3;+∞ ) функция непрерывна. Разрыв возможен лишь в точкеx = 3 , в которой изменяется аналитическое задание функции.

Найдем односторонние пределы функции в указанной точке:

f (3− 0)= lim (1− x 2 )= 1− 9= 8;

x →3 −0

f (3+ 0)= lim 5x = 15.

x →3 +0

Мы видим, что левый и правый пределы конечны, поэтому x = 3

разрыва I

f (x ) . Скачок функции в

f (3+ 0)− f (3− 0)= 15− 8= 7 .

f (3)= 5 3= 15= f (3+ 0) , поэтому в точке

x = 3

f (x ) непрерывна справа.

2) Функция непрерывна на всей числовой оси, кроме точки x = − 1, в которой она не определена. Преобразуем выражение дляf (x ) , разложив числитель

дроби на множители:

f (x) =

4 x +3

(x + 1)(x + 3)

X + 3 приx ≠ − 1.

x + 1

x + 1

Найдем односторонние пределы функции в точке x = − 1:

f (x )= lim

f (x )= lim(x + 3)= 2 .

x →−1 −0

x →−1 +0

x →−1

Мы выяснили, что левый и правый пределы функции в исследуемой точке существуют, конечны и равны между собой, поэтому x = − 1 – точка устранимо-

прямую y = x + 3 с «выколотой» точкойM (− 1;2) . Чтобы функция стала непре-

рывной, следует положить f (− 1)= f (− 1− 0)= f (− 1+ 0)= 2 .

Таким образом, доопределив f (x ) по непрерывности в точкеx = − 1, мы получили функциюf * (x )= x + 3 с областью определения(−∞ ;+∞ ) .

3) Данная функция определена и непрерывна для всех x , кроме точек

x = 0 ,x = 2 , в которых знаменатель дроби обращается в ноль.

Рассмотрим точку x = 0:

Поскольку в достаточно малой окрестности нуля функция принимает толь-

ко отрицательные значения, то f (− 0)= lim

= −∞ = f (+0)

Т.е. точка

(x − 2)

x →−0

x = 0 является точкой разрыва II рода функции

f (x ) .

Рассмотрим теперь точку x = 2:

Функция принимает отрицательные значения вблизи слева от рассматри-

ваемой точки и положительные – справа, поэтому

f (2− 0)=

= −∞,

x4 (x− 2)

x →2 −0

f (2+ 0)= lim

= +∞ . Как и в предыдущем случае, в точкеx = 2

(x − 2)

x →2 +0

ция не имеет ни левого, ни правого конечного пределов, т.е. терпит в этой точке разрыв II рода.

x = 5 .

f (5− 0)= lim arctg

π ,f (5+ 0)= lim arctg

x = 5

(x − 5)

(x − 5)

x →5 −0

x →5 +0

ка разрыва

f (5+ 0)− f (5− 0)=

π − (−

π )= π (см. рис. 5.2).

Задачи для самостоятельного решения

5.174. Пользуясь лишь определением, доказать непрерывность функцииf (x ) в

каждой точке x 0 R :

а) f(x) = c= const;

б) f (x )= x ;

в) f (x )= x 3 ;

г) f (x )= 5x 2 − 4x + 1;

д) f (x )= sinx .

5.175. Доказать, что функция

f (x) = x 2

1 приx ≥ 0,

является непрерывной на

1 при x < 0

всей числовой оси. Построить график этой функции.

5.176. Доказать, что функция

f (x) = x 2

1 приx ≥ 0,

не является непрерывной

0 при x < 0

в точке x = 0 , но непрерывна справа в этой точке. Построить график функцииf (x ) .

рывной в точке x =

Но непрерывна слева в этой точке. Построить график

функции f (x ) .

5.178. Построить графики функций

а) y =

x + 1

б) y= x+

x + 1

x + 1

x + 1

Какие из условий непрерывности в точках разрыва этих функций выполнены, и какие не выполнены?

5.179. Указать точку разрыва функции

sin x

При x ≠ 0

при x = 0

Какие из условий непрерывности в этой точке выполнены, и какие не выполнены?

Если функция f (x ) не является непрерывной в точке x = a , то говорят, что f (x ) имеетразрыв в этой точке. На рисунке 1 схематически изображены графики четырех функций, две из которых непрерывны при x = a , а две имеют разрыв.

Непрерывна при x = a .

Имеет разрыв при x = a .

Непрерывна при x = a .

Имеет разрыв при x = a .

Рисунок 1.

Классификация точек разрыва функции

Все точки разрыва функции разделяются наточки разрыва первого и второго рода .

Говорят, что функция f (x ) имеетточку разрыва первого рода при x = a , если в это точке

При этом возможно следующие два случая:

Функция f (x ) имеетточку разрыва второго рода при x = a , если по крайней мере один из односторонних пределов не существует или равен бесконечности.

Пример3 .13 Рассмотрим функцию(функция Хевисайда ) на отрезке,. Тогданепрерывна на отрезке(несмотря на то, что в точкеона имеет разрыв первого рода).


Рис.3 .15 .График функции Хевисайда

Аналогичное определение можно дать и для полуинтервалов видаи, включая случаии. Однако можно обобщить данное определение на случай произвольного подмножестваследующим образом. Введём сначала понятиеиндуцированной набазы: пусть -- база, все окончаниякоторой имеют непустые пересечения с. Обозначимчерези рассмотрим множество всех. Нетрудно тогда проверить, что множествобудет базой. Тем самым дляопределены базы,и, где,и -- базы непроколотых двусторонних (соответственно левых, правых) окрестностей точки(их определение см. в начале текущей главы).

Свойства функций, непрерывных на отрезке.

Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897)- немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке [ a , b ] выполняется условие - M £ f (x ) £ M .

Доказательство этого свойства основано на том, что функция, непрерывная в точке х 0 , ограничена в некоторой ее окрестности, а если разбивать отрезок [ a , b ] на бесконечное количество отрезков, которые “стягиваются” к точке х 0 , то образуется некоторая окрестность точки х 0 .

Свойство 2: Функция, непрерывная на отрезке [ a , b ], принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения х 1 и х 2 , что f (x 1 ) = m , f (x 2 ) = M , причем

m £ f (x ) £ M

Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например - f (x ) = sinx ).

Разность между наибольшим и наименьшим значением функции на отрезке называетсяколебанием функции на отрезке.

Свойство 3: (Вторая теорема Больцано - Коши). Функция, непрерывная на отрезке [ a , b ], принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4: Если функция f (x ) непрерывна в точке х = х 0 , то существует некоторая окрестность точки х 0 , в которой функция сохраняет знак.

Свойство 5: (Первая теорема Больцано (1781-1848) - Коши). Если функция f (x )- непрерывная на отрезке [ a , b ] и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f (x ) = 0.

Т . е . если sign(f(a)) ¹ sign(f(b)), то $ х 0 : f(x 0) = 0.

Определение. Функция f (x ) называетсяравномерно непрерывной на отрезке [ a , b ], если для любого e >0 существует D >0 такое, что для любых точек х 1 Î [ a , b ] и x 2 Î [ a , b ] таких, что

ï х 2 - х 1 ï < D

верно неравенство ï f (x 2 ) - f (x 1 ) ï < e

Отличие равномерной непрерывности от “обычной” в том, что для любого e существует свое D , не зависящее от х, а при “обычной” непрерывности D зависит от e и х.

Свойство 6: Теорема Кантора (Кантор Георг (1845-1918)- немецкий математик). Функция, непрерывная на отрезке, равномерно непрерывна на нем.

(Это свойство справедливо только для отрезков, а не для интервалов и полуинтервалов.)

Пример .

Все точки разрыва функции разделяются на точки разрыва первого и второго рода .

Говорят, что функция f (x ) имеет точку разрыва первого рода при x = a , если в это точке

При этом возможно следующие два случая:

  • Левосторонний предел и правосторонний предел равны друг другу:

Такая точка называется точкой устранимого разрыва .

  • Левосторонний предел и правосторонний предел не равны друг другу:

Такая точка называется точкой конечного разрыва . Модуль разности значений односторонних пределов называется скачком функции .

Функция f (x ) имеет точку разрыва второго рода при x = a , если по крайней мере один из односторонних пределов не существует или равен бесконечности.

Пример 1

Исследовать функцию на непрерывность.


Решение.

Данная функция не определена в точках x = − 1 и x = 1. Следовательно, функция имеет разрывы в точкахx = ± 1. Чтобы определить тип разрыва, вычислим односторонние пределы в этих точках.

Поскольку левосторонний предел при x = − 1 равен бесконечности, то данная точка является точкой разрыва второго рода.

Аналогично, левосторонний предел в точке x = 1 равен бесконечности. Эта точка также является точкой разрыва второго рода.

Пример 2

Показать, что функция имеет устранимый разрыв в точке x = 0.


Решение.

Очевидно, данная функция не определена при x = 0. Поскольку sin x является непрерывной функцией для всехx , то искомая функция также непрерывна при всех x за исключением точки x = 0.
Так как , то в данной точке существует устранимый разрыв. Мы можем сконструировать новую функцию

которая будет непрерывной при любом действительном x .

Пример 3

Найти точки разрыва функции , если они существуют.


Решение.

Данная функция существует при всех значениях x , однако она состоит из двух различных функций и, поэтому, не является элементарной. Исследуем "поведение" этой функции вблизи точки x = 0, где ее аналитическое выражение изменяется.



Вычислим односторонние пределеы при x = 0.

Следовательно, функция имеет точку разрыва первого рода при x = 0. Скачок функции в этой точке равен

При всех других значениях x функция является непрерывной, поскольку обе составляющие функции слева и справа от точки x = 0 представляют собой элементарные функции без точек разрыва.

Пример 4

Найти точки разрыва функции , если они существуют.


Решение.

Данная элементарная функция определена для всех x , исключая точку x = 0, где она имеет разрыв. Найдем односторонние пределы в этой точке.

Видно, что в точке x = 0 существует разрыв первого рода (рисунок 2).

Рис.2 Рис.3

Пример 5

Найти точки разрыва функции , если таковые существуют.


Решение.

Функция определена и непрерывна при всех x , за исключением точки , где существует разрыв. Исследуем точку разрыва.

Так как значения односторонних пределов конечны, то, следовательно, в точке существует разрыв первого рода. График функции схематически показан на рисунке 3.

Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897) - немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке выполняется условие - .

Доказательство этого свойства основано на том, что функция, непрерывная в точке , ограничена в некоторой ее окрестности, а если разбивать отрезок на бесконечное количество отрезков, которые “стягиваются” к точке , то образуется некоторая окрестность точки .

Свойство 2: Функция, непрерывная на отрезке , принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения и , что , причем .

Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например - ).

Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке.

Свойство 3: (Вторая теорема Больцано - Коши). Функция, непрерывная на отрезке , принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4: Если функция непрерывна в точке , то существует некоторая окрестность точки , в которой функция сохраняет знак.

Свойство 5: (Первая теорема Больцано (1781-1848) - Коши). Если функция - непрерывная на отрезке и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где .

Т.е. если , то .

Определение. Функция называется равномерно непрерывной на отрезке , если для любого существует такое, что для любых точек и таких, что верно неравенство .

Пример. Исследовать на непрерывность функцию и определить тип точек разрыва, если они есть. в точке функция непрерывна в точке

точка разрыва 1 - го рода