Какое чисел не является целым. Целые числа

Учитель высшей категории

Какие числа называются целыми?

Цели урока:

-Расширить понятие числа введением отрицательных чисел:

-Сформировать навык записи положительных и отрицательных чисел.

Задачи урока.

Образовательные – содействовать развитию умения обобщать и систематизировать, содействовать развитию математического кругозора, мышления и речи, внимания и памяти.

Воспитательные – воспитание установки на самообразование, самовоспитание, точную исполнительность, творческое отношение к деятельности, критичность мышления.

Развивающие – развивать у школьников умения сравнивать и обобщать, логически излагать мысли, развивать математический кругозор, мышление и речь, внимание и память .

Ход урока:

1. Вводная беседа.

До сих пор на уроках математики мы рассматривали какие числа?

-Натуральные и дробные.

Какие числа называются натуральными?

- Это числа используемые при счете предметов.

Сколько их можете сказать?

- бесконечно много.

Ноль является натуральным числом? Почему?

-Для чего нужны дробные числа?

-Мы не только считаем предметы, но части некоторых величин.

Какие дроби вы знаете?

- Обыкновенные и десятичные.

Задание № 1.

Среди чисел назовите натуральные? Обыкновенные дроби? Десятичные дроби?

10; 1,1; https://pandia.ru/text/77/504/images/image002_2.png" width="16" height="35 src=">; https://pandia.ru/text/77/504/images/image004_0.png" width="24" height="35 src=">.

2. Объяснение нового материала:

Однако в жизни вы уже наверняка встречались и с другими числами, какими? Где?

-Отрицательными. Например, в сводке погоды.

Перед тем, как перейти к изучению новой темы, давайте обсудим знаки, которые помогут в расширении множества чисел. Это знаки плюс и минус. Подумайте, с чем же в жизни ассоциируются эти знаки. Это может быть все, что угодно: белое - черное, хорошее – плохое. Ваши примеры мы запишем в виде таблицы.

Как много мыслей вызывают всего два знака. На самом деле эти два знака дают возможность идти в разные стороны. Такие числа, «похожие» на натуральные, но со знаком минус, нужны в тех случаях, когда величина может меняться в двух противоположных направлениях. Для выражения величины отрицательным числом вводят некоторую начальную, нулевую отметку. Посмотрим примеры, которые сделали другие, а дома подумаете и сделаем свою презентацию. Слайд № 2-7.

Использование знака очень удобно. Его использование принято во всем мире. Но так было не всегда. Слайд №8.

Итак, наряду с натуральными числами

1, 2, 3, 4, 5, …100, …, 1000, …

Мы будем рассматривать отрицательные числа, каждое из которых получается приписыванием к соответствующему натуральному числу знака минус:

-1,- 2, - 3, - 4, - 5, …-100, …,- 1000, …

Натуральное число и соответствующее ему отрицательное число называют противоположными. Например, числа15 и -15. Можно -15 и 15. О противоположен себе.

Правило: Натуральные числа, противоположные им отрицательные и число 0 называют целыми числами. Все эти числа вместе составляют множество целых чисел.

Откройте учебник стр 159, найдите правило, прочитайте еще раз, дома его учим наизусть.

Натуральное число принято называть также положительным целым, т е это одно и то же. Перед ним, для того чтобы подчеркнуть внешнее отличие от отрицательного, иногда ставится знак плюс. +5=5.

3. Формирование умений и навыков:

1) № 000.

2) Выпишите данные числа в две группы: положительные и отрицательные:

-15, 7, 28, -41, 0, 382, -591, -999, 2000.

3) Игра «мое настроение».

Сейчас выбудете оценивать свое настроение в настоящий момент по следующей шкале:

Хорошее настроение: +1, +2, +3, +4, +5.

Плохое настроение: -1, -2, -3, -4, -5.

Один человек будет писать результаты на доске, а все остальные будут вслух по очереди говорить: «У меня хорошее настроение на4балла»

4) Игра « хлопушка»

Я буду называть пары чисел, если пара является противоположной, то вы хлопаете в ладоши, если же нет, то в классе должна быть тишина:

5 и -5; 6 и 0,6; -300 и 300; 3 и 1/3; 8 и 80; 14 и -14; 5/7 и 7/5; -1 и 1.

5) Пропедевтика изучения сложения целых чисел:

№ 000 (а).

Решение смотрим с помощью презентации. Слайд №8.

4. Итоги урока:

-Какие числа называются положительными? Отрицательными?

-Что узнали про о?

- Для чего нужны отрицательные числа?

-Как записываются положительные и отрицательные числа?

5. Д/З: п. 8.1, № 000, 721(б), 715(б). Творческое задание: сочинить стих про целые числа, рисунок, презентацию, сказку.

Из цифры вычтем мы другую,
Ставим черточку прямую.
Этот знак мы узнаем,
"Минус" мы его зовем.
1.
Стоит единичка,
Похожа на спичку.
Она просто черточка
С маленькой челочкой.

2.
По воде скользит едва,
Словно лебедь, цифра два.
Шею выгнула дугой,
Гонит волны за собой.

3.
Два крючочка, посмотри,
Получилась цифра три.
Но на эти два крючка
Не насадишь червячка.

4.
Вилку как-то уронили,
Один зубчик отломили.
Вилка эта в целом мире
Называется "четыре".

5.
Цифра пять - с большим брюшком,
Носит кепку с козырьком.
В школе эту цифру пять
Дети любят получать.

6.
Что за вишенка, дружок,
Кверху загнут стебелек?
Ты ее попробуй съесть,
Эта вишня - цифра шесть.

7.
Я такую кочергу
Сунуть в печку не смогу.
Про нее известно всем,
Что она зовется "семь".

8.
Вилась веревочка, вилась,
В две петельки заплелась.
"Что за цифра?" - маму спросим.
Мама нам ответит: "Восемь".

9.
Ветер сильный дул и дул,
Вишенку перевернул.
Цифра шесть, скажи на милость,
В цифру девять превратилась.

10.
Словно старшая сестричка,
Ведет нолик единичка.
Только вместе пошагали,
Сразу цифрой десять стали.

Стихи о математике

Математика – основа и царица всех наук,
И тебе с ней подружиться я советую, мой друг.
Ее мудрые законы если будешь выполнять,
Свои знанья приумножишь,
Станешь ты их применять.
Сможешь по морю ты плавать,
Сможешь в космосе летать.
Дом построить людям сможешь:
Будет он сто лет стоять.
Не ленись, трудись, старайся,
Познавая соль наук
Все доказывать пытайся,
Но не покладая рук.
Станет пусть бином Ньютона
Для тебя, как друг родной,
Как в футболе Марадонна,
В алгебре он основной.
Синус, косинус и тангенс
Должен знать ты на зубок.
И конечно же котангенс,–
Это точно, мой дружок.
Если это все изучишь,
Если твердо будешь знать,
То, возможно, ты сумеешь
Звезды в небе сосчитать
Саушкина Яна, 8 класс
Люблю я математику,
Не так она сложна,
И нет там в ней грамматики,
И всем она нужна.
По алгебре проходим мы
Координаты, ось,
Куда идет прямая,
Прямо или вкось.
Сложение квадратов,
Деление корней,
И что получится при этом,
Узнаем только в ней.
Фигур найдешь симметрию,
Взяв в руки геометрию.

Аржникова Светлана,
8 класс

Сложная наука математика:
Нужно здесь делить и умножать.
Это не ИЗО и не грамматика,
Много надо тут запоминать.
Это не труды, не биология,
Формул много нужно применять.
Это не рассказ и не трилогия,
Можно здесь из чисел вычитать.
Это не английский и не музыка,
Умная наука, но трудна.
Сложная наука математика –
Пригодится в жизни нам она.

Разборов Роман,
8 класс

Скорость свою найти
И рассчитать пути
Сможет тебе помочь
Лишь математика.
Есть у меня тетрадь,
Только вот что скрывать:
Часто бывает лень
Что-то в нее вписать.
Даром преподаватели
Время со мною тратили,
Даром со мною мучались,
Время теряли зря.
Мудрых преподавателей
Слушал я невнимательно,
Если что было задано,
Не выполнял ведь я.
Сделать хотел квадрат,
Но был и сам не рад:
Стороны измерял,
В градусах записал.
Вместо сторон – углы,
А на углах круги.
Я б не хотел сейчас
Это решать опять.
Стал вырезать я круг,
Ромб получился вдруг,
Радиус не нашел,
Диагональ провел.
Ночью приснился сон:
Круг плачет, плачет он.
Плачет и говорит:
“Что с нами сделал ты?”

,
учитель математики

Раз, два, три, четыре, пять,
Встали цифры дружно в ряд.
Будем мы сейчас считать:
Складывать и умножать.
Дважды два равно четыре;
Дважды три, конечно, шесть.
Знает каждый во всем мире,
Сколько будет два плюс шесть.
А теперь сравнить мы можем,
Что же больше: два иль семь?
В этом правило поможет
Тот ответ найти нам всем.
С математикой мы будем
Крепко-накрепко дружить,
Никогда мы не забудем
Этой дружбой дорожить.

Витютнева Марина,

· Много из математики не остается в памяти, но когда поймешь ее, тогда легко при случае вспомнить забытое.

Существуют множество разновидностей чисел, одни из них – это целые числа. Целые числа появились для того, чтобы облегчить счет не только в положительную сторону, но и в отрицательную.

Рассмотрим пример:
Днем на улице была температура 3 градуса. К вечеру температура снизилась на 3 градуса.
3-3=0
На улице стало 0 градусов. А ночью температура снизилась на 4 градуса и стало показывать на термометре -4 градуса.
0-4=-4

Ряд целых чисел.

Натуральными числами мы такую задачу описать мы не сможем, рассмотрим эту задачу на координатной прямой.

У нас получился ряд чисел:
…, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, …

Этот ряд чисел называется рядом целых чисел .

Целые положительные числа. Целые отрицательные числа.

Ряд целых чисел состоит из положительных и отрицательных чисел. Справа от нуля идут натуральные числа или их еще называют целыми положительными числами . А слева от нуля идут целые отрицательные числа.

Нуль не является ни положительным ни отрицательным числом. Он является границей между положительными и отрицательными числами.

– это множество чисел, состоящие из натуральных чисел, целых отрицательных чисел и нуля.

Ряд целых чисел в положительную и в отрицательную сторону является бесконечным множеством.

Если мы возьмём два любых целых числа, то числа, стоящие между этими целыми числами, будут называться конечным множеством.

Например:
Возьмем целые числа от -2 до 4. Все числа, стоящие между этими числами, входят в конечное множество. Наше конечное множество чисел выглядит так:
-2, -1, 0, 1, 2, 3, 4.

Натуральные числа обозначаются латинской буквой N.
Целые числа обозначаются латинской буквой Z. Все множество натуральных чисел и целых чисел можно изобразить на рисунке.


Неположительные целые числа другими словами – это отрицательные целые числа.
Неотрицательные целые числа – это положительные целые числа.

В данной статье определим множество целых чисел, рассмотрим, какие целые называются положительными, а какие отрицательными. Также покажем, как целые числа используются для описания изменения некоторых величин. Начнем с определения и примеров целых чисел.

Yandex.RTB R-A-339285-1

Целые числа. Определение, примеры

Вначале вспомним про натуральные числа ℕ . Само название говорит о том, что это такие числа, которые естественно использовались для счета с незапамятных времен. Для того, чтобы охватить понятие целых чисел, нам нужно расширить определение натуральных чисел.

Определение 1. Целые числа

Целые числа - это натуральные числа, числа, противоположные им, и число нуль.

Множество целых чисел обозначается буквой ℤ .

Множество натуральных чисел ℕ - подмножество целых чисел ℤ . Любое натуральное число является целым, но не любое целое число является натуральным.

Из определения следует, что целым является любое из чисел 1 , 2 , 3 . . , число 0 , а также числа - 1 , - 2 , - 3 , . .

В соответствии с этим, приведем примеры. Числа 39 , - 589 , 10000000 , - 1596 , 0 являются целыми числами.

Пусть координатная прямая проведена горизонтально и направлена вправо. Взглянем на нее, чтобы наглядно представить расположение целых чисел на прямой.

Началу отсчета на координатной прямой соответствует число 0 , а точкам, лежащим по обе стороны от нуля соответствуют положительные и отрицательные целые числа. Каждой точке соответствует единственное целое число.

В любую точку прямой, координатой которой является целое число, можно попасть, отложив от начала координат некоторое количество единичных отрезков.

Положительные и отрицательные целые числа

Из всех целых чисел логично выделить положительные и отрицательные целые числа. Дадим их определения.

Определение 2. Положительные целые числа

Положительные целые числа - это целые числа со знаком "плюс".

Например, число 7 - целое число со знаком плюс, то есть положительное целое число. На координатной прямой это число лежит справа от точки отсчета, за которую принято число 0 . Другие примеры положительных целых чисел: 12 , 502 , 42 , 33 , 100500 .

Определение 3. Отрицательные целые числа

Отрицательные целые числа - это целые числа со знаком "минус".

Примеры целых отрицательных чисел: - 528 , - 2568 , - 1 .

Число 0 разделяет положительные и отрицательные целые числа и само не является ни положительным, ни отрицательным.

Любое число, противоположное положительному целому числу, в силу определения, является отрицательным целым числом. Справедливо и обратное. Число, обратное любому отрицательному целому числу, есть положительное целое число.

Можно дать другие формулировки определений отрицательных и положительных целых чисел, используя их сравнение с нулем.

Определение 4. Положительные целые числа

Положительные целые числа - это целые числа, которые больше нуля.

Определение 5. Отрицательные целые числа

Отрицательные целые числа - это целые числа, которые меньше нуля.

Соответственно, положительные числа лежат правее начала отсчета на координатной прямой, а отрицательные целые числа находятся левее от нуля.

Ранее мы уже говорили, что натуральные числа - это подмножество целых. Уточним этот момент. Множество натуральных чисел составляют целые положительные числа. В свою очередь, множество отрицательных целых чисел является множеством чисел, противоположных натуральным.

Важно!

Любое натуральное число можно назвать целым, но любое целое число нельзя назвать натуральным. Отвечая на вопрос, являются ли являются ли отрицательные числа натуральными, нужно смело говорить - нет, не являются.

Неположительные и неотрицательные целые числа

Дадим определения.

Определение 6. Неотрицательные целые числа

Неотрицательные целые числа - это положительные целые числа и число нуль.

Определение 7. Неположительные целые числа

Неположительные целые числа - это отрицательные целые числа и число нуль.

Как видим, число нуль не является ни положительным, ни отрицательным.

Примеры неотрицательных целых чисел: 52 , 128 , 0 .

Примеры неположительных целых чисел: - 52 , - 128 , 0 .

Неотрицательное число - это число, большее или равное нулю. Соответственно, неположительное целое число - это число, меньшее или равное нулю.

Термины "неположительное число" и "неотрицательное число" используются для краткости. Например, вместо того, чтобы говорить, что число a - целое число, которое больше или равно нулю, можно сказать: a - целое неотрицательное число.

Использование целых чисел при описании изменения величин

Для чего используются целые числа? В первую очередь, с их помощью удобно описывать и определять изменение количества каких-либо предметов. Приведем пример.

Пусть на складе хранится какое-то количество коленвалов. Если на склад привезут еще 500 коленвалов, то их количество увеличится. Число 500 как раз и выражает изменение (увеличение) количества деталей. Если потом со склада увезут 200 деталей, то это число также будет характеризовать изменение количества коленвалов. На этот раз, в сторону уменьшения.

Если же со склада ничего не будут забирать, и ничего не будут привозить, то число 0 укажет на неизменность количества деталей.

Очевидное удобство использования целых чисел в отличие от натуральных в том, что их знак явно указывает на направление изменения величины (увеличение или убывание).

Понижение температуры на 30 градусов можно охарактеризовать отрицательным числом - 30 , а увеличение на 2 градуса - положительным целым числом 2 .

Приведем еще один пример с использованием целых чисел. На этот раз, представим, что мы должны отдать кому-то 5 монет. Тогда, можно сказать, что мы обладаем - 5 монетами. Число 5 описывает размер долга, а знак "минус" говорит о том, что мы должны отдать монеты.

Если мы должны 2 монеты одному человеку, а 3 - другому, то общий долг (5 монет) можно вычислить по правилу сложения отрицательных чисел:

2 + (- 3) = - 5

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Чтобы НАМНОГО упростить себе жизнь когда надо что-то вычислить, чтобы выиграть драгоценное время на ОГЭ или ЕГЭ, чтобы сделать меньше глупых ошибок - читай этот раздел!

Вот чему ты научишься:

  • как быстрее, легче и точнее считать, используя группировку чисел при сложении и вычитании,
  • как без ошибок, быстро умножать и делить, используя правила умножения и признаки делимости ,
  • как значительно ускорить расчеты с помощью наименьшего общего кратного (НОК) и наибольшего общего делителя (НОД).

Владение приемами этого раздела может перевесить чашу весов в ту или иную сторону...поступишь ты в ВУЗ мечты или нет, придется тебе или твоим родителям платить огромные деньги за обучение или ты поступишь на бюджет.

Let"s dive right in... (Поехали!)

P.S. ПОСЛЕДНИЙ ЦЕННЫЙ СОВЕТ...

Множество целых чисел состоит из 3 частей:

  1. натуральные числа (рассмотрим их подробнее чуть ниже);
  2. числа, противоположные натуральным (все станет на свои места, как только ты узнаешь, что такое натуральные числа);
  3. ноль - " " (куда уж без него?)

буквой Z.

Натуральные числа

«Бог создал натуральные числа, всё остальное - дело рук человеческих» (c) Немецкий математик Кронекер.

Натуральные числа - это числа, которые мы употребляем для счета предметов и именно на этом основывается их история возникновения - необходимости считать стрелы, шкуры и т.д.

1, 2, 3, 4... n

буквой N.

Соответственно, в это определение не входит (не можешь же ты посчитать то, чего нет?) и тем более не входят отрицательные значения (разве бывает яблоко?).

Кроме этого, не входят и все дробные числа (мы также не можем сказать « у меня есть ноутбука», или «я продал машины»)

Любое натуральное число можно записать с помощью 10 цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Таким образом, 14 - это не цифра. Это число. Из каких цифр оно состоит? Правильно, из цифр и.

Сложение. Группировка при сложении чтобы быстрей считать и меньше ошибаться

Что интересного ты можешь сказать про эту процедуру? Конечно, ты сейчас ответишь «от перестановки слагаемых значение суммы не меняется». Казалось бы, примитивное, знакомое с первого класса правило, однако, при решении больших примеров оно моментально забывается!

Не забывай про него - используй группировку , чтобы облегчить себе процесс подсчета и снизить вероятность ошибок, ведь на ЕГЭ калькулятора у тебя не будет.

Смотри сам, какое выражение легче сложить?

  • 4 + 5 + 3 + 6
  • 4 + 6 + 5 + 3

​​Конечно же второе! Хотя результат один и тот же. Но! считая вторым способом у тебя меньше шансов ошибиться и ты все сделаешь быстрее!

Итак, ты в уме считаешь вот так:

4 + 5 + 3 + 6 = 4 + 6 + 5 + 3 = 10 + 5 + 3 = 18

Вычитание. Группировка при вычитании, чтобы быстрее считать и меньше ошибаться

При вычитании мы также можем группировать вычитаемые числа, например:

32 - 5 - 2 - 6 = (32 - 2) - 5 - 6 = 30 - 5 - 6 = 19

А что, если вычитание чередуется в примере со сложением? Так же можно группировать, ответишь ты, и это правильно. Только прошу, не забывай о знаках перед числами, например: 32 - 5 - 2 - 6 = (32 - 2) - (6 + 5) = 30 - 11 = 19

Помни: неправильно проставленные знаки приведут к ошибочному результату.

Умножение. Как умножать в уме

Очевидно, что от перемены мест множителей значение произведения также не изменится:

2 ⋅ 4 ⋅ 6 ⋅ 5 = (2 ⋅ 5 ) (4 ⋅ 6 ) = 1 0 ⋅ 2 4 = 2 4 0

Я не буду говорить тебе «используй это при решении примеров» (ты и сам понял намек, правда?), а лучше расскажу, как быстро умножать некоторые числа в уме. Итак, внимательно смотри таблицу:

И еще немного об умножении. Конечно, ты помнишь два особых случая … Догадываешься о чем я? Вот об этом:

Ах да, еще рассмотрим признаки делимости . Всего существует 7 правил по признакам делимости, из которых первые 3 ты точно уже знаешь!

А вот остальные совсем не сложно запомнить.

7 признаков делимости чисел, которые помогут тебе быстро считать в уме!

  • Первые три правила ты, конечно же, знаешь.
  • Четвертое и пятое легко запомнить - при делении на и мы смотрим, делится ли на это сумма цифр, составляющих число.
  • При делении на мы обращаем внимание на две последние цифры числа - делится ли число, которое они составляют на?
  • При делении на число должно одновременно делиться на и на. Вот и вся премудрость.

Ты сейчас думаешь - «зачем мне все это»?

Во-первых, ЕГЭ проходит без калькулятора и данные правила помогут тебе сориентироваться в примерах.

А во-вторых, ты же слышал задачи про НОД и НОК ? Знакомая аббревиатура? Начнем вспоминать и разбираться.

Наибольший общий делитель (НОД) - нужен для сокращения дробей и быстрых вычислений

Допустим, у тебя есть два числа: и. На какое наибольшее число делятся оба этих числа? Ты, не задумываясь, ответишь, потому что знаешь, что:

12 = 4 * 3 = 2 * 2 * 3

8 = 4 * 2 = 2 * 2 * 2

Какие цифры в разложении общие? Правильно, 2 * 2 = 4. Вот и твой ответ был. Держа в голове этот простой пример, ты не забудешь алгоритм, как находить НОД . Попробуй «выстроить» его у себя в голове. Получилось?

Чтобы найти НОД необходимо:

  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на, например, 3, 7, 11, 13 и т.д.).
  2. Перемножить их.

Понимаешь, зачем нам нужны были признаки делимости? Чтобы ты посмотрел на число и мог начать делить без остатка.

Для примера найдем НОД чисел 290 и 485

Первое число - .

Глядя на него, ты сразу можешь сказать, что оно делится на, запишем:

больше разделить ни на что нельзя, а вот можно - и, получаем:

290 = 29 * 5 * 2

Возьмем еще одно число - 485.

По признакам делимости оно должно без остатка делиться на, так как на заканчивается. Делим:

Проанализируем изначальное число.

  • На оно делиться не может (последняя цифра - нечетная),
  • - не делится на, значит число тоже не делится на,
  • на и на также не делится (сумма цифр, входящих в число, не делится на и на)
  • на тоже не делится, так как не делится на и,
  • на тоже не делится, так как не делится на и.
  • нельзя разделить на нацело,

Значит, число можно разложить только на и.

А теперь найдем НОД этих чисел (и). Какое это число? Правильно, .

Потренируемся?

Задача №1. Найти НОД чисел 6240 и 6800

1) Делю сразу на, так как оба числа 100% делятся на:

Задача №2. Найти НОД чисел 345 и 324

Здесь не могу быстро найти хоть один общий делитель, так что просто раскладываю на простые множители (как можно меньше):

Наименьшее общее кратное (НОК) - экономит время, помогает решить задачи нестандартно

Допустим, у тебя есть два числа - и. Какое существует самое маленькое число, которое делится и без остатка (то есть нацело)? Сложно представить? Вот тебе визуальная подсказка:

Ты же помнишь, что обозначается буквой? Правильно, как раз целые числа. Так какое наименьшее число подходит на место х? :

В данном случае.

Из этого простого примера вытекает несколько правил.

Правила быстрого нахождения НОК

Правило 1. Если одно из двух натуральных чисел делится на другое число, то большее из этих двух чисел является их наименьшим общим кратным.

Найди у следующих чисел:

  • НОК (7;21)
  • НОК (6;12)
  • НОК (5;15)
  • НОК (3;33)

Конечно, ты без труда справился с этой задачей и у тебя получились ответы - , и.

Заметь, в правиле мы говорим о ДВУХ числах, если чисел будет больше, то правило не работает.

Например, НОК (7;14;21) не равно 21, так как не делится без остатка на.

Правило 2. Если два (или более двух) числа являются взаимно простыми, то наименьшее общее кратное равно их произведению.

Найди НОК у следующих чисел:

  • НОК (1;3;7)
  • НОК (3;7;11)
  • НОК (2;3;7)
  • НОК (3;5;2)

Посчитал? Вот ответы - , ; .

Как ты понимаешь, не всегда можно так легко взять и подобрать этот самый х, поэтому для чуть более сложных чисел существует следующий алгоритм:

Потренируемся?

Найдем наименьшее общее кратное - НОК (345; 234)

Найди наименьшее общее кратное (НОК) самостоятельно

Какие ответы у тебя получились?

Вот, что вышло у меня:

Сколько времени ты потратил на нахождение НОК ? Мое время - 2 минуты, правда я знаю одну хитрость , которую предлагаю тебе открыть прямо сейчас!

Если ты очень внимателен, то ты наверное заметил, что по заданным числам мы уже искали НОД и разложение на множители этих чисел ты мог взять из того примера, тем самым упростив себе задачу, но это далеко не все.

Посмотри на картинку, возможно к тебе придут еще какие-нибудь мысли:

Ну что? Сделаю подсказку: попробуй перемножить НОК и НОД между собой и запиши все множители, которые будут при перемножении. Справился? У тебя должна получиться вот такая цепочка:

Присмотрись к ней повнимательней: сравни множители с тем, как раскладываются и.

Какой вывод ты можешь сделать из этого? Правильно! Если мы перемножим значения НОК и НОД между собой, то мы получим произведение этих чисел.

Соответственно, имея числа и значение НОД (или НОК ), мы можем найти НОК (или НОД ) по такой схеме:

1. Находим произведение чисел:

2. Делим получившееся произведение на наш НОД (6240; 6800) = 80:

Вот и все.

Запишем правило в общем виде:

Попробуй найти НОД , если известно, что:

Справился? .

Отрицательные числа - «лжечисла» и их признание человечеством.

Как ты уже понял, это числа, противоположные натуральным, то есть:

Отрицательные числа можно складывать, вычитать, умножать и делить - все как в натуральных. Казалось бы, что в них такого особенного? А дело в том, что отрицательные числа «отвоевывали» себе законное место в математике аж до XIX века (до этого момента было огромное количество споров, существуют они или нет).

Само отрицательное число возникло из-за такой операции с натуральными числами, как «вычитание». Действительно, из вычесть - вот и получается отрицательное число. Именно поэтому, множество отрицательных чисел часто называют «расширением множества натуральных чисел ».

Отрицательные числа долго не признавались людьми. Так, Древний Египет, Вавилон и Древняя Греция - светочи своего времени, не признавали отрицательных чисел, а в случае получения отрицательных корней в уравнении (например, как у нас), корни отвергались как невозможные.

Впервые отрицательные числа получили свое право на существование в Китае, а затем в VII веке в Индии. Как ты думаешь, с чем связано это признание? Правильно, отрицательными числами стали обозначать долги (иначе - недостачу). Считалось, что отрицательные числа - это временное значение, которое в результате изменится на положительное (то есть, деньги кредитору все же вернут). Однако, индийский математик Брахмагупта уже тогда рассматривал отрицательные числа наравне с положительными.

В Европе к полезности отрицательных чисел, а также к тому, что они могут обозначать долги, пришли значительно позже, эдак, на тысячелетие. Первое упоминание замечено в 1202 году в «Книге абака» Леонарда Пизанского (сразу говорю - к Пизанской башне автор книги отношения никакого не имеет, а вот числа Фибоначчи - это его рук дело (прозвище Леонардо Пизанского - Фибоначчи)). Далее европейцы пришли к тому, что отрицательные числа могут обозначать не только долги, но и нехватку чего бы то ни было, правда, признавали это не все.

Так, в XVII веке Паскаль считал что. Как думаешь, чем он это обосновывал? Верно, «ничто не может быть меньше НИЧЕГО». Отголоском тех времен остается тот факт, что отрицательное число и операция вычитания обозначается одним и тем же символом - минусом «-». И правда: . Число « » положительное, которое вычитается из, или отрицательное, которое суммируется к?... Что-то из серии «что первое: курица или яйцо?» Вот такая вот, своеобразная эта математическая философия.

Отрицательные числа закрепили свое право на существование с появлением аналитической геометрии, иначе говоря, когда математики ввели такое понятие как числовая ось.

Именно с этого момента наступило равноправие. Однако все равно вопросов было больше чем ответов, например:

пропорция

Данная пропорция носит название «парадокс Арно». Подумай, что в ней сомнительного?

Давай рассуждать вместе « » больше, чем « » верно? Таким образом, согласно логике, левая часть пропорции должна быть больше, чем правая, но они равны… Вот он и парадокс.

В итоге, математики договорились до того, что Карл Гаусс (да, да, это тот самый, который считал сумму (или) чисел) в 1831 году поставил точку - он сказал, что отрицательные числа имеют те же права, что и положительные, а то, что они применимы не ко всем вещам, ничего не означает, так как дроби так же не применимы ко многим вещам (не бывает так, что яму роют землекопа, нельзя купить билета в кино и т.д.).

Успокоились математики только в XIX веке, когда Уильямом Гамильтоном и Германом Грассманом была создана теория отрицательных чисел.

Вот такие они спорные, эти отрицательные числа.

Возникновение «пустоты», или биография нуля.

В математике - особенное число. С первого взгляда, это ничто: прибавить, отнять - ничего не изменится, но стоит только приписать его справа к « », и полученное число будет в раз больше изначального. Умножением на ноль мы все превращаем в ничто, а разделить на «ничто», то есть, мы не можем. Одним словом, волшебное число)

История нуля длинная и запутанная. След нуля найден в сочинениях китайцев во 2 тыс. н.э. и ещё раньше у майя. Первое использование символа нуля, каковым он является в наши дни, было замечено у греческих астрономов.

Существует множество версий, почему было выбрано именно такое обозначение «ничего». Некоторые историки склоняются к тому, что это омикрон, т.е. первая буква греческого слова ничто - ouden. Согласно другой версии, жизнь символу ноля дало слово «обол» (монета, почти не имеющая ценности).

Ноль (или нуль) как математический символ впервые появляется у индийцев (заметь, там же стали «развиваться» отрицательные числа). Первые достоверные свидетельства о записи нуля относятся к 876 г., и в них « » - составляющая числа.

В Европу ноль также пришел с запозданием - лишь в 1600г., и также как и отрицательные числа, сталкивался с сопротивлением (что поделаешь, такие они, европейцы).

«Нуль часто ненавидели, издавна боялись, а то и запрещали» — пишет американский математик Чарльз Сейф. Так, турецкий султан Абдул-Хамид II в конце XIXв. приказал своим цензорам вычеркнуть из всех учебников химии формулу воды H2O, принимая букву «О» за нуль и не желая, чтобы его инициалы порочились соседством с презренным нулём».

На просторах интернета можно встретить фразу: «Ноль - самая могущественная сила во Вселенной, он может всё! Ноль создаёт порядок в математике, и он же вносит в неё хаос». Абсолютно верно подмечено:)

Краткое изложение раздела и основные формулы

Множество целых чисел состоит из 3 частей:

  • натуральные числа (рассмотрим их подробнее чуть ниже);
  • числа, противоположные натуральным;
  • ноль - " "

Множество целых чисел обозначается буквой Z.

1. Натуральные числа

Натуральные числа - это числа, которые мы употребляем для счета предметов.

Множество натуральных чисел обозначается буквой N.

В операциях с целыми числами понадобится умение находить НОД и НОК.

Наибольший общий делитель (НОД)

Чтобы найти НОД необходимо:

  1. Разложить числа на простые множители (на такие числа, которые нельзя разделить ни на что больше, кроме самого себя или на, например, и т.д.).
  2. Выписать множители, которые входят в состав обоих чисел.
  3. Перемножить их.

Наименьшее общее кратное (НОК)

Чтобы найти НОК необходимо:

  1. Разложить числа на простые множители (это ты уже отлично умеешь делать).
  2. Выписать множители входящие в разложение одного из чисел (лучше брать самую длинную цепочку).
  3. Добавить к ним недостающие множители из разложений остальных чисел.
  4. Найти произведение получившихся множителей.

2. Отрицательные числа

это числа, противоположные натуральным, то есть:

Теперь я хочу слышать тебя...

Надюсь ты оценил супер-полезные "трюки" этого раздела и понял как они помогут тебе на экзамене.

И что более важно - в жизни. Я об этом не говорю, но, поверь, этот так. Умение быстро и без ошибок считать спасает во многих жизненных ситуациях.

Теперь твой ход!

Напиши, будешь ли ты применять методы группировки, признаки делимости, НОД и НОК в расчетах?

Может быть ты применял их ранее? Где и как?

Возможно у тебя есть вопросы. Или предложения.

Напиши в комментариях как тебе статья.

И удачи на экзаменах!

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Словосочетание «числовые множества » довольно часто встречается в учебниках математики. Там очень часто можно встретить фразы такого плана:

«Бла-бла-бла, где принадлежит множеству натуральных чисел».

Частенько вместо окончания фразы можно увидеть вот такую запись . Она означает то же что и текст немного выше — число принадлежит множеству натуральных чисел. Многие довольно часто не придают внимания в каком множестве определена та или иная переменная. В результате применяться совершенно неверные методы при решении задачи или доказательстве теоремы. Это происходит из-за того, что свойства чисел принадлежащих различным множествам могут иметь различия.

Числовых множеств не так уж и много. Ниже можно увидеть определения различных числовых множеств.

Множество натуральных чисел включает в себя все целые числа больше нуля — положительные целые числа.

Например: 1, 3, 20, 3057. Множество не включает в себя цифру 0.

В это числовое множество входят все целые числа больше и меньше нуля, а так же ноль .

Например: -15, 0, 139.

Рациональные числа, вообще говоря, представляют собой множество дробей, которые не сокращаются (если дробь сокращается, то это уже будет целое число, и для этого случая не стоит вводить еще одно числовое множество).

Пример чисел входящих в рациональное множество: 3/5, 9/7, 1/2.

,

где – конечная последовательность цифр целой части числа, принадлежащего множеству вещественных чисел. Эта последовательность является конечной, то есть количество цифр в целофй части вещественного числа конечное количество.

– бесконечная последовательность чисел, стоящих в дробной части вещественного числа. Выходит, что в дробной части присутствует бесконечное количество чисел.

Такие числа невозможно представить в виде дроби. В противном случае, подобное число можно было бы отнести к множеству рациональных чисел.

Примеры вещественных чисел:

Давайте рассмотрим значение корня из двух внимательнее. В целочисленной части представлена только одна цифра — 1, поэтому мы можем записать:

В дробной части (после точки) последовательно идут числа 4, 1, 4, 2 и так далее. Поэтому для первых четырех цифр можно записать:

Смею надеяться, что теперь запись определения множества вещественных чисел стала понятней.

Заключение

Следует помнить, что одна и та же функция может проявлять совершенно разные свойства в зависимости от того к какому множеству будет принадлежать переменная. Так что помните основы – они вам пригодятся.

Post Views: 5 198