Найти обратную матрицу с помощью присоединенной матрицы. Нахождение обратной матрицы

Похожие на обратные по многим свойствам.

Энциклопедичный YouTube

    1 / 5

    ✪ Как находить обратную матрицу - bezbotvy

    ✪ Обратная матрица (2 способа нахождения)

    ✪ Обратная матрица #1

    ✪ 2015-01-28. Обратная матрица 3x3

    ✪ 2015-01-27. Обратная матрица 2х2

    Субтитры

Свойства обратной матрицы

  • det A − 1 = 1 det A {\displaystyle \det A^{-1}={\frac {1}{\det A}}} , где det {\displaystyle \ \det } обозначает определитель .
  • (A B) − 1 = B − 1 A − 1 {\displaystyle \ (AB)^{-1}=B^{-1}A^{-1}} для двух квадратных обратимых матриц A {\displaystyle A} и B {\displaystyle B} .
  • (A T) − 1 = (A − 1) T {\displaystyle \ (A^{T})^{-1}=(A^{-1})^{T}} , где (. . .) T {\displaystyle (...)^{T}} обозначает транспонированную матрицу.
  • (k A) − 1 = k − 1 A − 1 {\displaystyle \ (kA)^{-1}=k^{-1}A^{-1}} для любого коэффициента k ≠ 0 {\displaystyle k\not =0} .
  • E − 1 = E {\displaystyle \ E^{-1}=E} .
  • Если необходимо решить систему линейных уравнений , (b - ненулевой вектор) где x {\displaystyle x} - искомый вектор, и если A − 1 {\displaystyle A^{-1}} существует, то x = A − 1 b {\displaystyle x=A^{-1}b} . В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Способы нахождения обратной матрицы

Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться одним из следующих способов:

Точные (прямые) методы

Метод Гаусса-Жордана

Возьмём две матрицы: саму A и единичную E . Приведём матрицу A к единичной матрице методом Гаусса-Жордана применяя преобразования по строкам (можно также применять преобразования и по столбцам, но не в перемешку). После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A −1 .

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц Λ i {\displaystyle \Lambda _{i}} (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

Λ 1 ⋅ ⋯ ⋅ Λ n ⋅ A = Λ A = E ⇒ Λ = A − 1 {\displaystyle \Lambda _{1}\cdot \dots \cdot \Lambda _{n}\cdot A=\Lambda A=E\Rightarrow \Lambda =A^{-1}} . Λ m = [ 1 … 0 − a 1 m / a m m 0 … 0 … 0 … 1 − a m − 1 m / a m m 0 … 0 0 … 0 1 / a m m 0 … 0 0 … 0 − a m + 1 m / a m m 1 … 0 … 0 … 0 − a n m / a m m 0 … 1 ] {\displaystyle \Lambda _{m}={\begin{bmatrix}1&\dots &0&-a_{1m}/a_{mm}&0&\dots &0\\&&&\dots &&&\\0&\dots &1&-a_{m-1m}/a_{mm}&0&\dots &0\\0&\dots &0&1/a_{mm}&0&\dots &0\\0&\dots &0&-a_{m+1m}/a_{mm}&1&\dots &0\\&&&\dots &&&\\0&\dots &0&-a_{nm}/a_{mm}&0&\dots &1\end{bmatrix}}} .

Вторая матрица после применения всех операций станет равна Λ {\displaystyle \Lambda } , то есть будет искомой. Сложность алгоритма - O (n 3) {\displaystyle O(n^{3})} .

С помощью матрицы алгебраических дополнений

Матрица, обратная матрице A {\displaystyle A} , представима в виде

A − 1 = adj (A) det (A) {\displaystyle {A}^{-1}={{{\mbox{adj}}(A)} \over {\det(A)}}}

где adj (A) {\displaystyle {\mbox{adj}}(A)} - присоединенная матрица ;

Сложность алгоритма зависит от сложности алгоритма расчета определителя O det и равна O(n²)·O det .

Использование LU/LUP-разложения

Матричное уравнение A X = I n {\displaystyle AX=I_{n}} для обратной матрицы X {\displaystyle X} можно рассматривать как совокупность n {\displaystyle n} систем вида A x = b {\displaystyle Ax=b} . Обозначим i {\displaystyle i} -ый столбец матрицы X {\displaystyle X} через X i {\displaystyle X_{i}} ; тогда A X i = e i {\displaystyle AX_{i}=e_{i}} , i = 1 , … , n {\displaystyle i=1,\ldots ,n} ,поскольку i {\displaystyle i} -м столбцом матрицы I n {\displaystyle I_{n}} является единичный вектор e i {\displaystyle e_{i}} . другими словами, нахождение обратной матрицы сводится к решению n уравнений с одной матрицей и разными правыми частями. После выполнения LUP-разложения (время O(n³)) на решение каждого из n уравнений нужно время O(n²), так что и эта часть работы требует времени O(n³) .

Если матрица A невырождена, то для неё можно рассчитать LUP-разложение P A = L U {\displaystyle PA=LU} . Пусть P A = B {\displaystyle PA=B} , B − 1 = D {\displaystyle B^{-1}=D} . Тогда из свойств обратной матрицы можно записать: D = U − 1 L − 1 {\displaystyle D=U^{-1}L^{-1}} . Если умножить это равенство на U и L то можно получить два равенства вида U D = L − 1 {\displaystyle UD=L^{-1}} и D L = U − 1 {\displaystyle DL=U^{-1}} . Первое из этих равенств представляет собой систему из n² линейных уравнений для n (n + 1) 2 {\displaystyle {\frac {n(n+1)}{2}}} из которых известны правые части (из свойств треугольных матриц). Второе представляет также систему из n² линейных уравнений для n (n − 1) 2 {\displaystyle {\frac {n(n-1)}{2}}} из которых известны правые части (также из свойств треугольных матриц). Вместе они представляют собой систему из n² равенств. С помощью этих равенств можно реккурентно определить все n² элементов матрицы D. Тогда из равенства (PA) −1 = A −1 P −1 = B −1 = D. получаем равенство A − 1 = D P {\displaystyle A^{-1}=DP} .

В случае использования LU-разложения не требуется перестановки столбцов матрицы D но решение может разойтись даже если матрица A невырождена.

Сложность алгоритма - O(n³).

Итерационные методы

Методы Шульца

{ Ψ k = E − A U k , U k + 1 = U k ∑ i = 0 n Ψ k i {\displaystyle {\begin{cases}\Psi _{k}=E-AU_{k},\\U_{k+1}=U_{k}\sum _{i=0}^{n}\Psi _{k}^{i}\end{cases}}}

Оценка погрешности

Выбор начального приближения

Проблема выбора начального приближения в рассматриваемых здесь процессах итерационного обращения матриц не позволяет относиться к ним как к самостоятельным универсальным методам, конкурирующими с прямыми методами обращения, основанными, например, на LU-разложении матриц. Имеются некоторые рекомендации по выбору U 0 {\displaystyle U_{0}} , обеспечивающие выполнение условия ρ (Ψ 0) < 1 {\displaystyle \rho (\Psi _{0})<1} (спектральный радиус матрицы меньше единицы), являющегося необходимым и достаточным для сходимости процесса. Однако при этом, во-первых, требуется знать сверху оценку спектра обращаемой матрицы A либо матрицы A A T {\displaystyle AA^{T}} (а именно, если A - симметричная положительно определённая матрица и ρ (A) ≤ β {\displaystyle \rho (A)\leq \beta } , то можно взять U 0 = α E {\displaystyle U_{0}={\alpha }E} , где ; если же A - произвольная невырожденная матрица и ρ (A A T) ≤ β {\displaystyle \rho (AA^{T})\leq \beta } , то полагают U 0 = α A T {\displaystyle U_{0}={\alpha }A^{T}} , где также α ∈ (0 , 2 β) {\displaystyle \alpha \in \left(0,{\frac {2}{\beta }}\right)} ; можно конечно упростить ситуацию и, воспользовавшись тем, что ρ (A A T) ≤ k A A T k {\displaystyle \rho (AA^{T})\leq {\mathcal {k}}AA^{T}{\mathcal {k}}} , положить U 0 = A T ‖ A A T ‖ {\displaystyle U_{0}={\frac {A^{T}}{\|AA^{T}\|}}} ). Во-вторых, при таком задании начальной матрицы нет гарантии, что ‖ Ψ 0 ‖ {\displaystyle \|\Psi _{0}\|} будет малой (возможно, даже окажется ‖ Ψ 0 ‖ > 1 {\displaystyle \|\Psi _{0}\|>1} ), и высокий порядок скорости сходимости обнаружится далеко не сразу.

Примеры

Матрица 2х2

A − 1 = [ a b c d ] − 1 = 1 det (A) [ d − b − c a ] = 1 a d − b c [ d − b − c a ] . {\displaystyle \mathbf {A} ^{-1}={\begin{bmatrix}a&b\\c&d\\\end{bmatrix}}^{-1}={\frac {1}{\det(\mathbf {A})}}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}={\frac {1}{ad-bc}}{\begin{bmatrix}\,\,\,d&\!\!-b\\-c&\,a\\\end{bmatrix}}.}

Обращение матрицы 2х2 возможно только при условии, что a d − b c = det A ≠ 0 {\displaystyle ad-bc=\det A\neq 0} .

Для любой невырожденной матрицы А существует и притом единственная матрица A -1 такая, что

A*A -1 =A -1 *A = E,

где E — единичная матрица тех же порядков, что и А. Матрица A -1 называется обратной к матрице A.

Если кто-то забыл, в единичной матрице, кроме диагонали, заполненной единицами, все остальные позиции заполнены нулями, пример единичной матрицы:

Нахождение обратной матрицы методом присоединённой матрицы

Обратная матрица определяется формулой:

где A ij - элементов a ij .

Т.е. для вычисления обратной матрицы, нужно вычислить определитель этой матрицы. Затем найти алгебраические дополнения для всех её элементов и составить из них новую матрицу. Далее нужно транспортировать эту матрицу. И каждый элемент новой матрицы поделить на определитель исходной матрицы.

Рассмотрим несколько примеров.

Найти A -1 для матрицы

Р е ш е н и е. Найдём A -1 методом присоединённой матрицы. Имеем det A = 2. Найдём алгебраические дополнения элементов матрицы A. В данном случае алгебраическими дополнениями элементов матрицы будут соответствующие элементы самой матрицы, взятые со знаком в соответствии с формулой

Имеем A 11 = 3, A 12 = -4, A 21 = -1, A 22 = 2. Образуем присоединённую матрицу

Транспортируем матрицу A*:

Находим обратную матрицу по формуле:

Получаем:

Методом присоединённой матрицы найти A -1 , если

Р е ш е н и е. Прежде всего вычисляем определитесь данной матрицы, чтобы убедиться в существовании обратной матрицы. Имеем

Здесь мы прибавили к элементам второй строки элементы третьей строки, умноженные предварительно на (-1), а затем раскрыли определитель по второй строке. Так как определитесь данной матрицы отличен от нуля, то обратная к ней матрица существует. Для построения присоединённой матрицы находим алгебраические дополнения элементов данной матрицы. Имеем

В соответствии с формулой

транспортируем матрицу A*:

Тогда по формуле

Нахождение обратной матрицы методом элементарных преобразований

Кроме метода нахождения обратной матрицы, вытекающего из формулы (метод присоединенной матрицы), существует метод нахождения обратной матрицы, называемый методом элементарных преобразований.

Элементарные преобразования матрицы

Элементарными преобразованиями матрицы называются следующие преобразования:

1) перестановка строк (столбцов);

2) умножение строки (столбца) на число, отличное от нуля;

3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), предварительно умноженных на некоторое число.

Для нахождения матрицы A -1 построим прямоугольную матрицу В = (А|Е) порядков (n; 2n), приписывая к матрице А справа единичную матрицу Е через разделительную черту:

Рассмотрим пример.

Методом элементарных преобразований найти A -1 , если

Р е ш е н и е. Образуем матрицу B:

Обозначим строки матрицы B через α 1 , α 2 , α 3 . Произведём над строками матрицы B следующие преобразования.

В первой части был рассмотрен способ нахождения обратной матрицы с помощью алгебраических дополнений. Здесь же мы опишем иной метод нахождения обратных матриц: с использованием преобразований метода Гаусса и Гаусса-Жордана. Зачастую этот метод нахождения обратной матрицы именуют методом элементарных преобразований.

Метод элементарных преобразований

Для применения этого метода в одну матрицу записывают заданную матрицу $A$ и единичную матрицу $E$, т.е. составляют матрицу вида $(A|E)$ (эту матрицу называют также расширенной). После этого с помощью элементарных преобразований, выполняемых со строками расширенной матрицы, добиваются того, что матрица слева от черты станет единичной, причём расширенная матрица примет вид $\left(E| A^{-1} \right)$. К элементарным преобразованиям в данной ситуации относят такие действия:

  1. Смена мест двух строк.
  2. Умножение всех элементов строки на некоторое число, не равное нулю.
  3. Прибавление к элементам одной строки соответствующих элементов другой строки, умноженных на любой множитель.

Применять указанные элементарные преобразования можно разными путями. Обычно выбирают метод Гаусса или метод Гаусса-Жордана. Вообще, методы Гаусса и Гаусса-Жордана предназначены для решения систем линейных алгебраических уравнений, а не для нахождения обратных матриц. Фразу «применение метода Гаусса для нахождения обратной матрицы» здесь нужно понимать как «применение операций, свойственных методу Гаусса, для нахождения обратной матрицы».

Нумерация примеров продолжена с первой части . В примерах и рассмотрено применение метода Гаусса для нахождения обратной матрицы, а в примерах и разобрано использование метода Гаусса-Жордана. Следует отметить, что если в ходе решения все элементы некоторой строки или столбца матрицы, расположенной до черты, обнулились, то обратной матрицы не существует.

Пример №5

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {ccc} 7 & 4 & 6 \\ 2 & 5 & -4 \\ 1 & -1 & 3 \end{array} \right)$.

В этом примере будет найдена обратная матрица методом Гаусса. Расширенная матрица, имеющая в общем случае вид $(A|E)$, в данном примере примет такую форму: $ \left(\begin{array} {ccc|ccc} 7 & 4 & 6 & 1 & 0 & 0 \\ 2 & 5 & -4 & 0 & 1 & 0 \\ 1 & -1 & 3 & 0 & 0 & 1 \end{array} \right)$.

Цель: с помощью элементарных преобразований привести расширенную матрицу к виду $\left(E|A^{-1} \right)$. Применим те же операции, что применяются при решении систем линейных уравнений методом Гаусса. Для применения метода Гаусса удобно, когда первым элементом первой строки расширенной матрицы является единица. Чтобы добиться этого, поменяем местами первую и третью строки расширенной матрицы, которая станет такой: $ \left(\begin{array} {ccc|ccc} 1 & -1 & 3 & 0 & 0 & 1 \\ 2 & 5 & -4 & 0 & 1 & 0 \\ 7 & 4 & 6 & 1 & 0 & 0 \end{array} \right)$.

Теперь приступим к решению. Метод Гаусса делится на два этапа: прямой ход и обратный (подробное описание этого метода для решения систем уравнений дано в примерах соответствующей темы). Те же два этапа будут применены и в процессе отыскания обратной матрицы.

Прямой ход

Первый шаг

С помощью первой строки обнуляем элементы первого столбца, расположенные под первой строкой:

Немного прокомментирую выполненное действие. Запись $II-2\cdot I$ означает, что от элементов второй строки вычли соответствующие элементы первой строки, предварительно умноженные на два. Это действие можно записать отдельно следующим образом:

Точно так же выполняется и действие $III-7\cdot I$. Если возникают сложности с выполнением этих операций, их можно выполнить отдельно (аналогично показанному выше действию $II-2\cdot I$), а результат потом внести в расширенную матрицу.

Второй шаг

С помощью второй строки обнуляем элемент второго столбца, расположенный под второй строкой:

Разделим третью строку на 5:

Прямой ход окончен. Все элементы, расположенные под главной диагональю матрицы до черты, обнулились.

Обратный ход

Первый шаг

С помощью третьей строки обнуляем элементы третьего столбца, расположенные над третьей строкой:

Перед переходом к следующему шагу разделим вторую строку на $7$:

Второй шаг

С помощью второй строки обнуляем элементы второго столбца, расположенные над второй строкой:

Преобразования закончены, обратная матрица методом Гаусса найдена: $A^{-1}=\left(\begin{array} {ccc} -11/5 & 18/5 & 46/5 \\ 2 & -3 & -8 \\ 7/5 & -11/5 & -27/5 \end{array} \right)$. Проверку, при необходимости, можно сделать так же, как и в предыдущих примерах. Если пропустить все пояснения, то решение примет вид:

Ответ : $A^{-1}=\left(\begin{array} {ccc} -11/5 & 18/5 & 46/5 \\ 2 & -3 & -8 \\ 7/5 & -11/5 & -27/5 \end{array} \right)$.

Пример №6

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {cccc} -5 & 4 & 1 & 0 \\ 2 & 3 & -2 & 1 \\ 0 & 7 & -4 & -3 \\ 1 & 4 & 0 & 6 \end{array} \right)$.

Для нахождения обратной матрицы в этом примере будем использовать те же операции, что применяются при решении систем линейных уравнений методом Гаусса. Подробные пояснения даны в , здесь же ограничимся краткими комментариями. Запишем расширенную матрицу: $\left(\begin{array} {cccc|cccc} -5 & 4 & 1 & 0 & 1 & 0 & 0 & 0 \\ 2 & 3 & -2 & 1 &0 &1&0 &0 \\ 0 & 7 & -4 & -3 &0 & 0 & 1 & 0\\ 1 & 4 & 0 & 6 &0 &0 & 0 & 1 \end{array} \right)$. Поменяем местами первую и четвёртую строки данной матрицы: $\left(\begin{array} {cccc|cccc} 1 & 4 & 0 & 6 &0 &0 & 0 & 1 \\ 2 & 3 & -2 & 1 &0 &1&0 &0 \\ 0 & 7 & -4 & -3 &0 & 0 & 1 & 0\\ -5 & 4 & 1 & 0 & 1 & 0 & 0 & 0 \end{array} \right)$.

Прямой ход

Преобразования прямого хода завершены. Все элементы, расположенные под главной диагональю матрицы слева от черты, обнулились.

Обратный ход

Обратная матрица методом Гаусса найдена, $A^{-1}=\left(\begin{array} {cccc} -13/14 & -75/8 & 31/8 & 7/2 \\ -19/8 & -117/16 & 49/16 & 11/4 \\ -23/4 & -141/8 & 57/8 & 13/2 \\ 17/8 & 103/6 & -43/16 & -9/4 \end{array} \right)$. Проверку, при необходимости, проводим так же, как и в примерах №2 и №3.

Ответ : $A^{-1}=\left(\begin{array} {cccc} -13/14 & -75/8 & 31/8 & 7/2 \\ -19/8 & -117/16 & 49/16 & 11/4 \\ -23/4 & -141/8 & 57/8 & 13/2 \\ 17/8 & 103/6 & -43/16 & -9/4 \end{array} \right)$.

Пример №7

Найти матрицу $A^{-1}$, если $A=\left(\begin{array} {ccc} 2 & 3 & 4 \\ 7 & 1 & 9 \\ -4 & 5 & -2 \end{array} \right)$.

Для нахождения обратной матрицы применим операции, характерные методу Гаусса-Жордана. Отличие от метода Гаусса, рассмотренного в предыдущих примерах и , состоит в том, что решение осуществляется в один этап. Напомню, что метод Гаусса делится на 2 этапа: прямой ход («делаем» нули под главной диагональю матрицы до черты) и обратный ход (обнуляем элементы над главной диагональю матрицы до черты). Для вычисления обратной матрицы методом Гаусса-Жордана двух стадий решения не потребуется. Для начала составим расширенную матрицу: $(A|E)$:

$$ (A|E)=\left(\begin{array} {ccc|ccc} 2 & 3 & 4 & 1 & 0 & 0\\ 7 & 1 & 9 & 0 & 1 & 0\\ -4 & 5 & -2 &0 & 0 & 1 \end{array} \right) $$

Первый шаг

Обнулим все элементы первого столбца кроме одного. В первом столбце все элементы отличны от нуля, посему можем выбрать любой элемент. Возьмём, к примеру, $(-4)$:

Выбранный элемент $(-4)$ находится в третьей строке, посему именно третью строку мы используем для обнуления выделенных элементов первого столбца:

Сделаем так, чтобы первый элемент третьей строки стал равен единице. Для этого разделим элементы третьей строки расширенной матрицы на $(-4)$:

Теперь приступим к обнулению соответствующих элементов первого столбца:

В дальнейших шагах использовать третью строку уже будет нельзя, ибо мы её уже применили на первом шаге.

Второй шаг

Выберем некий не равный нулю элемент второго столбца и обнулим все остальные элементы второго столбца. Мы можем выбрать любой из двух элементов: $\frac{11}{2}$ или $\frac{39}{4}$. Элемент $\left(-\frac{5}{4} \right)$ выбрать нельзя, ибо он расположен в третьей строке, которую мы использовали на предыдущем шаге. Выберем элемент $\frac{11}{2}$, который находится в первой строке. Сделаем так, чтобы вместо $\frac{11}{2}$ в первой строке стала единица:

Теперь обнулим соответствующие элементы второго столбца:

В дальнейших рассуждениях первую строку использовать нельзя.

Третий шаг

Нужно обнулить все элементы третьего столбца кроме одного. Нам надо выбрать некий отличный от нуля элемент третьего столбца. Однако мы не можем взять $\frac{6}{11}$ или $\frac{13}{11}$, ибо эти элементы расположены в первой и третьей строках, которые мы использовали ранее. Выбор невелик: остаётся лишь элемент $\frac{2}{11}$, который находится во второй строке. Разделим все элементы второй строки на $\frac{2}{11}$:

Теперь обнулим соответствующие элементы третьего столбца:

Преобразования по методу Гаусса-Жордана закончены. Осталось лишь сделать так, чтобы матрица до черты стала единичной. Для этого придется менять порядок строк. Для начала поменяем местами первую и третью строки:

$$ \left(\begin{array} {ccc|ccc} 1 & 0 & 0 & 47/4 & -13/2 & -23/4 \\ 0 & 0 & 1 & -39/4 & 11/2 & 19/4 \\ 0 & 1 & 0 & 11/2 & -3 & -5/2 \end{array} \right) $$

Теперь поменяем местами вторую и третью строки:

$$ \left(\begin{array} {ccc|ccc} 1 & 0 & 0 & 47/4 & -13/2 & -23/4 \\ 0 & 1 & 0 & 11/2 & -3 & -5/2 \\ 0 & 0 & 1 & -39/4 & 11/2 & 19/4 \end{array} \right) $$

Итак, $A^{-1}=\left(\begin{array} {ccc} 47/4 & -13/2 & -23/4 \\ 11/2 & -3 & -5/2 \\ -39/4 & 11/2 & 19/4 \end{array} \right)$. Естественно, что решение можно провести и по-иному, выбирая элементы, стоящие на главной диагонали. Обычно именно так и поступают, ибо в таком случае в конце решения не придется менять местами строки. Я привел предыдущее решение лишь с одной целью: показать, что выбор строки на каждом шаге не принципиален. Если выбирать на каждом шаге диагональные элементы, то решение станет таким.

Обратная матрица для данной это такая матрица, умножение исходной на которую дает единичную матрицу: Обязательным и достаточным условием наличия обратной матрицы является неравенство нулю детерминанта исходной (что в свою очередь подразумевает, что матрица должна быть квадратная). Если же определитель матрицы равняется нулю, то ее называют вырожденной и такая матрица не имеет обратной. В высшей математике обратные матрицы имеют важное значение и применяются для решения ряда задач. Например, на нахождении обратной матрицы построен матричный метод решения систем уравнений. Наш сервис сайт позволяет вычислять обратную матрицу онлайн двумя методами: методом Гаусса-Жордана и с помощью матрицы алгебраических дополнений. Прервый подразумевает большое количество элементарных преобразований внутри матрицы, второй - вычисление детерминанта и алгебраических дополнений ко всем элементам. Для вычисления определителя матрицы онлайн вы можете воспользоваться другим нашим сервисом - Вычисление детерминанта матрицы онлайн

.

Найти обратную матрицу на сайт

сайт позволяет находить обратную матрицу онлайн быстро и бесплатно. На сайте произвордятся вычисления нашим сервисом и выдается результат с подробным решением по нахождению обратной матрицы . Сервер всегда выдает только точный и верный ответ. В задачах по определению обратной матрицы онлайн , необходимо, чтобы определитель матрицы был отличным от нуля, иначе сайт сообщит о невозможности найти обратную матрицу ввиду равенства нулю определителя исходной матрицы. Задача по нахождению обратной матрицы встречается во многих разделах математики, являясь одним из самых базовых понятий алгебры и математическим инструментом в прикладных задачах. Самостоятельное определение обратной матрицы требует значительных усилий, много времени, вычислений и большой внимательности, чтобы не допустить описку или мелкую ошибку в вычислениях. Поэтому наш сервис по нахождению обратной матрицы онлайн значительно облегчит вам задачу и станет незаменимым инструментом для решения математических задач. Даже если вы находите обратную матрицу самостоятельно, мы рекомендуем проверить ваше решение на нашем сервере. Ввведите вашу исходную матрицу у нас на Вычисление обратной матрицы онлайн и сверьте ваш ответ. Наша система никогда не ошибается и находит обратную матрицу заданной размерности в режиме онлайн мгновенно! На сайте сайт допускаются символьные записи в элементах матриц , в этом случае обратная матрица онлайн будет представлена в общем символьном виде.