Нобелевская премия 1921. Как альберт эйнштейн получил премию и стал нобелевским лауреатом

Легендарный ученый, создавший теорию относительности, по сей день остается одной из самых загадочных фигур научного мира. Несмотря на десятки опубликованных биографий и мемуаров, истинность многих фактов биографии Эйнштейна так же относительна, как и его теория.

Чтобы пролить свет на жизнь ученого исследователям пришлось ждать много лет. В 2006 году архив Еврейского университета Иерусалима обнародовал закрытую прежде переписку гениального физика с женами, любовницами и детьми.

Из писем следует, что Эйнштейн имел не менее десяти любовниц. Предпочитал скучным лекциям в университете игру на скрипке, а самым близким человеком считал приемную дочь Марго, которая и отдала почти 3500 писем отчима в дар Еврейскому университету Иерусалима с условием, что обнародовать корреспонденцию университет сможет только через 20 лет после ее смерти, пишут "Известия" .

Впрочем, и без донжуанского списка жизнь гениального ученого всегда представляла огромный интерес как для людей науки, так и для простых обывателей.

От компаса до интегралов

Будущий нобелевский лауреат появился на свет 14 марта 1879 года в немецком городке Ульме. Поначалу ничто не предвещало ребенку великого будущего: мальчик начал говорить поздно, и его речь была несколько замедленной. Первое научное исследование Эйнштейна состоялось, когда ему исполнилось три года. На день рождения родители подарили ему компас, ставший впоследствии его любимой игрушкой. Мальчика чрезвычайно удивляло то, что стрелка компаса все время указывала на одну и ту же точку в комнате, как бы его не крутили.

Между тем, родителей Эйнштейна волновали его проблемы с речью. Как рассказывала младшая сестра ученого Майя Винтелер-Эйнштейн, каждую фразу, которую он готовился произнести, даже самую простую, мальчик долго повторял про себя, шевеля губами. Привычка медленно говорить впоследствии стала раздражать и преподавателей Эйнштейна. Однако, несмотря на это, уже после первых дней учебы в католической начальной школе его определили как способного ученика и перевели во второй класс.

После переезда семьи в Мюнхен, Эйнштейн начал обучаться в гимназии. Однако здесь вместо занятий он предпочитал изучать любимые науки самостоятельно, что и дало свои результаты: в точных науках Эйнштейн далеко опередил сверстников. В 16 лет он владел дифференциальными и интегральными исчислениями. При этом Эйнштейн много читал и прекрасно играл на скрипке. Позднее, когда ученого спрашивали, что натолкнуло его на создание теории относительности, он ссылался на романы Федора Достоевского и философию Древнего Китая, пишет портал cde.osu.ru .

Провал

Не окончив гимназию, 16-летний Альберт отправился поступать в политехническое училище, в Цюрих, однако "завалил" вступительные экзамены по языкам, ботанике и зоологии. При этом Эйнштейн блестяще сдал математику и физику, после чего его пригласили сразу в старший класс кантональной школы в Аарау, по окончании которой он стал студентом Цюрихского политехникума. Здесь его учителем был математик Герман Минковский. Говорят, что именно Минковскому принадлежит заслуга придания теории относительности законченной математической формы.

Эйнштейну удалось окончить университет с высоким баллом и с отрицательной характеристикой преподавателей: в учебном заведении будущий нобелевский лауреат слыл заядлым прогульщиком. Позднее Эйнштейн говорил, что у него "просто времени не было ходить на занятия".

Долгое время выпускник не мог найти работу. "Я был третируем моими профессорами, которые не любили меня из-за моей независимости и закрыли мне путь в науку", - приводит слова Эйнштейна "Википедия" .

Великий донжуан

Еще в университете Эйнштейн слыл отчаянным женолюбом, однако со временем остановил свой выбор на Милеве Марич, с которой он познакомился в Цюрихе. Милева была старше Эйнштейна на четыре года, но училась на одном с ним курсе.

"Она изучала физику, и с Эйнштейном ее сблизил интерес к трудам великих ученых. Эйнштейн испытывал потребность в товарище, с которым он мог бы делиться мыслями о прочитанном. Милева была пассивным слушателем, но Эйнштейн вполне удовлетворялся этим. В тот период судьба не столкнула его ни с товарищем, равным ему по силе ума (в полной мере этого не произошло и позже), ни с девушкой, чье обаяние не нуждалось в общей научной платформе", - писал советский "эйнштейновед" Борис Григорьевич Кузнецов.

Супруга Эйнштейна "блистала по математике и физике": она прекрасно умела производить алгебраические вычисления и неплохо ориентировалась в аналитической механике. Благодаря этим качествам Марич могла принимать самое деятельное участие в написании всех основных работ мужа, пишет freelook.ru .

Союз Марич и Эйнштейна разрушило непостоянство последнего. Альберт Эйнштейн пользовался огромным успехом у женщин, и его супругу постоянно мучила ревность. Позднее их сын Ганс-Альберт писал: "Мать была типичной славянкой с очень сильными и устойчивыми отрицательными эмоциями. Она никогда не прощала обид…" В 1919 году, пара рассталась, заранее договорившись о том, что Нобелевскую премию Эйнштейн отдаст своей бывшей супруге и двум сыновьям - Эдуарду и Гансу.

Во второй раз ученый женился на своей двоюродной сестре Эльзе. Современники считали ее женщиной недалекой, круг интересов которой ограничивался нарядами, драгоценностями и сладостями.

Судя по письмам, опубликованным в 2006 году, во время второго брака у Эйнштейна было около десяти романов, включая связь с секретаршей и одной светской дамой по имени Этель Мичановски. Последняя преследовала его так агрессивно, что, по словам Эйнштейна, "она совершенно не контролировала свои поступки”.

В отличие от Марич, Эльза не обращала внимания на многочисленные измены мужа. Она по-своему помогала ученому: поддерживала подлинный порядок во всем, что касалось материальных аспектов его жизни.

"Просто нужно выучить арифметику"

Как и любой гений Альберт Эйнштейн порой страдал от рассеянности. Рассказывают, что однажды, зайдя в берлинский трамвай , он по привычке углубился в чтение. Потом, не глядя на кондуктора, вынул из кармана заранее отсчитанные на билет деньги.

Здесь не хватает, - сказал кондуктор.

Не может быть, - ответил ученый, не отрываясь от книжки.

А я вам говорю - не хватает.

Эйнштейн еще раз покачал головой, дескать, такого не может быть. Кондуктор возмутился:

Тогда считайте, вот - 15 пфеннигов. Так что не хватает еще пяти.

Эйнштейн пошарил рукой в кармане и действительно нашел нужную монету. Ему стало неловко, но кондуктор, улыбаясь, сказал: "Ничего, дедушка, просто нужно выучить арифметику".

Однажды в бернском патентном бюро Эйнштейну вручили большой конверт. Увидев, что на нем напечатан непонятный текст для некоего Тинштейна, он выбросил письмо в урну. Только позже выяснилось, что в конверте было приглашение на кальвиновские торжества и извещение о присуждении Эйнштейну степени почетного доктора Женевского университета.

Об этом случае есть упоминание в книге Э. Дюкаса и Б. Хофмана "Альберт Эйнштейн как человек" , в основу которой легли отрывки из ранее не публиковавшихся писем Эйнштейна.

Неудачное вложение

Свой шедевр - общую теорию относительности - Эйнштейн завершил в 1915 году в Берлине. В ней излагалась совершенно новое представление о пространстве и времени. Помимо прочих явлений, работа предсказывала отклонение световых лучей в гравитационном поле, что впоследствии и подтвердили английские ученые.

Нобелевскую премию по физике Эйнштейн получил в 1922 году, но не за свою гениальную теорию, а за объяснение фотоэффекта (выбивание электронов из некоторых веществ под действием света). Всего за одну ночь ученый стал знаменит на весь мир. В обнародованной три года назад переписке ученого рассказывается, что большую часть Нобелевской премии Эйнштейн инвестировал в Соединенные Штаты, потеряв при этом почти все из-за Великой депрессии.

Несмотря на признание, в Германии ученый постоянно подвергался преследованиям, причем не только из-за национальной принадлежности, но и из-за своих антимилитаристских взглядов. "Мой пацифизм - это инстинктивное чувство, которое владеет мной потому, что убийство человека отвратительно. Моё отношение исходит не из какой-либо умозрительной теории, а основано на глубочайшей антипатии к любому виду жестокости и ненависти", - писал ученый в поддержку своей антивоенной позиции.

В конце 1922 года Эйнштейн покидает Германию и отправляется в путешествие. Оказавшись в Палестине, он торжественно открывает Еврейский Университет в Иерусалиме.

Исключение из "Манхэттенского проекта"

Между тем в Германии политическая ситуация становилась все более напряженной. Во время одной из лекций реакционно настроенные студенты вынудили ученого прервать лекцию в Берлинском университете и покинуть аудиторию. Вскоре в одной из газет появился призыв к убийству ученого. В 1933 году к власти пришел Гитлер. В этом же году Альберт Эйнштейн принял окончательное решение покинуть Германию.

В марте 1933 он заявил о своем выходе из Прусской Академии наук и вскоре переехал в США, где начал работать в институте фундаментальных физических исследований в Принстоне. После прихода Гитлера к власти ученый уже более никогда не бывал в Германии.

В США Эйнштейн получил американское гражданство, одновременно оставаясь гражданином Швейцарии. В 1939 году он поставил свою подпись в письме президенту Рузвельту, в котором говорилось об угрозе создания нацистами ядерного оружия. В письме ученые также указывали, что в интересах Рузвельта готов начать исследования по разработке такого оружия.

Это письмо считается основанием "Манхэттенского проекта" - программы, во время которой были созданы атомные бомбы, сброшенные на Японию в 1945 году.

Участие Эйнштейна в "Манхэттенском проекте" ограничилось только этим письмом. В том же 1939 году его отстранили от участия в секретных правительственных разработках, уличив в связи с коммунистическими группами США.

Отказ от поста президента

В последние годы жизни Эйнштейн оценивал ядерное оружие уже с точки зрения пацифиста. Он и еще несколько крупнейших ученых мира обратились к правительствам всех стран с предупреждением об опасности применения водородной бомбы.

На склоне лет ученому представился шанс попробовать себя в политике. Когда не стало израильского президента Хаима Вейзманна в 1952 году, премьер-министр Израиля Давид Бен-Гурион пригласил Эйнштейна на должность президента страны, пишет xage.ru . На что великий физик ответил: "Я глубоко тронут предложением государства Израиль, но с сожалением и прискорбием должен его отклонить".

Смерть великого ученого окружена тайной. О похоронах Эйнштейна знал только ограниченный круг людей. По легенде, вместе с ним закопали пепел его работ, которые он сжег перед кончиной. Эйнштейн считал, что они могут навредить человечеству. Исследователи считают, что секрет, который унес с собой Эйнштейн, действительно мог перевернуть мир. Речь не идет о бомбе - по сравнению с последними разработками ученого, считают эксперты, даже она показалась бы детской игрушкой.

Относительность теории относительности

Величайшего ученого не стало больше полувека тому назад, однако над его теорией относительности специалисты не устают спорить до сих пор. Кто-то пытается доказать ее несостоятельность, есть даже те, кто попросту считают, что "нельзя увидеть во сне решение такой серьезной проблемы".

С опровержением теории Эйнштейна выступали и отечественные ученые. Так, профессор МГУ Аркадий Тимирязев писал, что "так называемые опытные подтверждения теории относительности - искривления световых лучей вблизи Солнца, смещение спектральных линий в гравитационном поле и движения перигелия Меркурия - не являются доказательством истинности теории относительности".

Другой советский ученый, академик РАН Виктор Филиппович Журавлев считал, что общая теория относительности имеет сомнительный мировоззренческий характер, поскольку здесь вступает в роль чисто философская компонента: "Если вы стоите на позициях вульгарного материализма, то можете утверждать, что мир искривлён. Если вы разделяете позитивизм Пуанкаре, то должны признать, что всё это лишь язык. Тогда прав Л.Бриллюен и современная космология это мифотворчество. В любом случае шум вокруг релятивизма это явление политическое, а не научное".

В начале этого года кандидат биологических наук, автор диссертации об экологии кавказских индеек (уларов), член общественной Медико-технической академии Джабраил Базиев заявил, что разработал новую физическую теорию, опровергающую, в частности, теорию относительности Эйнштейна.

На пресс-конференции в Москве 10 марта Базиев заявил, что скорость света не является постоянной величиной (300 тысяч километров в секунду), а зависит от длины волны и может достигать, в частности, в случае гамма-излучения 5 миллионов километров в секунду. Базиев утверждает, что провел эксперимент, в котором он замерил скорость распространения пучков света одной длины волны (одного цвета в видимом диапазоне) и получил разные значения для синего, зеленого и красного лучей. А в теории относительности, как известно, скорость у света постоянна.

В свою очередь ученый-физик Виктор Саврин называет "чушью" теорию Базиева, якобы опровергающую теорию относительности, и полагает, что он не обладает достаточной квалификацией и не знает того, что опровергает.

Материал подготовлен интернет-редакцией www.rian.ru на основе информации РИА Новости и открытых источников

Вот уже 105 лет каждый год осенью весь научный мир с нетерпением ждет новостей из Королевской академии наук в Стокгольме. Именно там принимаются решения о присуждении Нобелевских премий. Знак признания заслуг ученого перед человечеством, высшая оценка достижений в области физики, химии, биологии и медицины...

Защищенные сложной системой отбора кандидатов, выборы проходят в обстановке строгой секретности и материалы по ним становятся доступны историкам лишь через 50 лет после принятия решений. Отбор кандидатов начинается с первоначального списка, составляемого на основе номинаций, которые могли подавать, главным образом, члены Королевской академии наук Швеции, члены Нобелевских комитетов, бывшие Нобелевские лауреаты, профессора университетов Швеции и других скандинавских стран и некоторые другие лица по выбору академии. Позже к ним добавились и другие категории номинаторов, но в начале XX века дела обстояли несколько проще. Из этого списка выбирают более короткий (в наши дни даже этот более короткий список может насчитывать сотни кандидатов), после чего бумаги каждого из кандидатов отсылают внешним экспертам. Наконец, все отзывы экспертов снова поступают в соответствующие Нобелевские комитеты, которые и должны принять окончательное решение.

85 лет назад, в 1921 г. ни у кого не было сомнений в том, кто именно должен получить Нобелевскую премию по физике. Премия 1920 г. ко всеобщему удивлению уже ушла к одному малоизвестному швейцарскому физику. Имя Альберта Эйнштейна снова было у всех на устах. Да и сам Эйнштейн был практически уверен в том, что его ждет успех. Еще в 1919 г., оформляя развод со своей первой женой, Милевой Марич, он передавал ей все права на премию, которую он «в конце-концов» должен получить. Однако Академия не дрогнула. Ноябрь 1921 г. прошел в тягостном молчании. Нобелевская премия 1921 г. по физике не была присуждена никому.

Удивительный год

Для того, чтобы понять, что так удивило мировую общественность в ноябре 1920 и 1921 гг., нам надо погрузиться еще на 15 лет в прошлое.

В 1905 г. 26-летний клерк патентного бюро Альберт Эйнштейн (1879-1955) опубликовал несколько статей, которые совершили настоящий переворот в физике. Позже этот год получил название annus mirabilis - удивительный год. Влияние эйнштейновских статей 1905 г. на развитие науки в XX веке было столь значительно, что, в ознаменование столетия этого события, 2005 г. был объявлен «Всемирным годом физики».

В этих работах Эйнштейн объяснил вещи, многие из которых, хотя бы на уровне названий, известны сейчас каждому образованному человеку.

В статье «Об одной эвристической точке зрения касательно порождения и превращения света» Эйнштейн объяснил явление фотоэлектрического эффекта: вырывание электронов из металлов под действием облучения. Объяснение было связано с предположением о том, что свет состоит из отдельных частиц, так называемых квантов (это понятие было предложено пятью годами раньше Максом Планком), энергия которых связана с частотой электромагнитного излучения. Чем выше частота, тем больше энергии несут в себе частицы. Электроны, поглощая кванты, могут приобретать столь высокую энергию, что вырываются за пределы поверхности кристаллической решетки. Позже этот эффект нашел себе обширное поле для практического применения в фотоэлементах. Имя частицам света нашлось лишь несколько лет спустя. Сегодня они известны нам под названием фотонов.

В статье «О следующем из молекулярно-кинетической теории теплоты движении частиц, взвешенных в покоящихся жидкостях» он дал объяснение феномену Броуновского движения. Открытое ботаником Робертом Броуном (1773–1858) в 1827 г. «приплясывание» мелких частиц, взвешенных в жидкостях, долгое время рассматривалось как любопытный курьез, и для него даже было разработано математическое описание, но именно Эйнштейн превратил его в доказательство атомного строения вещества. Важно помнить, что в 1905 г. мир очевидностей был другим. Нам, учившимся по учебникам физики конца XX - начала XXI века, эти сомнения могу показаться забавными, но многие физики и химики сто лет назад еще не верили в реальность атомов, считая их не более, чем удобной абстракцией, придуманной для объяснения некоторых экспериментальных феноменов.

Наконец, в вышедшей в июне 1905 г. статье «К электродинамике движущихся тел» были изложены основы специальной теории относительности. В ней описывались проблемы наблюдателя, движущегося с большими скоростями относительно наблюдаемых им объектов, которое, в связи с постоянством предельной скорости света, вызывало неизбежные проблемы с оценкой одновременности событий, линейных размеров и массы тел, заставляя вводить в измерения так называемые релятивистские поправки.

Физики довольно быстро распознали значение этих работ, и в Нобелевский комитет потек тонкий ручеек номинаций. Этот ручеек стал еще шире, когда к 1915 г. Эйнштейну удалось разработать общую теорию относительности, включившую в себя и новое истолкование гравитации.

Нобелевский комитет оказался в неудобной ситуации. Несмотря на явную значимость достижений, Эйнштейн во многом отличался от представления об идеальном кандидате. Он был теоретиком, а не экспериментатором. Непосредственная польза от его «изобретений» при всем величии замысла была крайне сомнительной. Наконец, Эйнштейн меньше всего соответствовал образу кабинетного ученого, оторванного от всего земного, по крупицам собирающего эмпирические зерна абсолютной истины. Его активная пацифистская позиция в годы первой мировой войны, когда самые светлые умы были помутнены националистическим и милитаристским дурманом (германские профессора, например, считали войну исполнением культуртрегерской миссии германского народа), открытые симпатии к левым, отказ от Германского гражданства, наконец, не в последнюю очередь, еврейские корни... Все это вызывало настороженность и неприятие в германоязычном научном сообществе, на окраине которого находилась маленькая Швеция.

Полное затмение

1919 г. стал переломным. 29 мая 1919 г. английский астроном Артур Эддингтон (1882-1944) сумел организовать решающие наблюдения, подтвердившие важные положения общей теории относительности. Он предположил, что, если теории Эйнштейна верны, и тела большой массы действительно способны искривлять пространство, то это искривление можно будет обнаружить, наблюдая за прохождением света от точечных источников вблизи тел большой массы. Беда была только в одном. На Земле не было ни нужных расстояний, ни тел достаточной массы, которые породили бы заметное искривление пространства. На счастье, поблизости от Земли имелась природная экспериментальная установка. Роль точечных источников света могли сыграть звезды, роль массивного тела - Солнце. Оставалась одна проблема. Солнечные лучи рассеиваются в атмосфере Земли, и наблюдение звезд, находящихся вблизи солнечного диска, невозможно. Для того, чтобы пронаблюдать их, необходимо всего-навсего «погасить» Солнце. Каждый астроном знает, как это сделать. Достаточно дождаться солнечного затмения. Луна способна полностью загородить солнечный диск и предоставить уникальные возможности для наблюдения. Полное солнечное затмение удается наблюдать не везде, поэтому ради его наблюдения были направлены экспедиции в Бразилию и на Принсипи, остров близ западного берега Африки. Во время полного солнечного затмения, длившегося всего шесть минут, сотрудники экспедиций Эддингтона успели замерить координаты звезд, находившихся вблизи Солнца.

6 ноября 1919 г. после долгих расчетов и проверок Эддингтон обнародовал результаты наблюдений. Координаты звезд, замеренные им, отличались от обычных на величину, предсказанную согласно общей теории относительности. Эйнштейн буквально проснулся знаменитым. Уже 7 ноября Лондонская «Таймс» вышла с огромными заголовками «Революция в науке - Новая теория вселенной - Ньютоновские идеи повержены». «Нью-Йорк Таймс» откликалась 10 ноября: «Свет весь скривился в небесах! Ученые мужи пребывают в волнении по поводу результатов наблюдения за затмением. Теория Эйнштейна торжествует. Звезды не там, где кажутся и не там, где они должны быть по расчетам, но никому нет нужды волноваться. Книга для двенадцати мудрецов: не более - столько людей во всем мире могли бы понять ее, сказал Эйнштейн, передавая ее своим отважным издателям».

Эйнштейн был нарасхват. Его приглашали с лекциями в университеты всего образованного мира, от США до Японии.

Все это не тронуло Нобелевский комитет. Несмотря на то, что Эйнштейна снова номинировали, премия 1920 г. была присуждена швейцарскому физику Шарлю Эдуару Гийому (1861-1938), который создал высокоинертные никелевые сплавы с аномально низким коэффициентом температурного расширения. Инвар и элинвар, созданные им, оказались необычайно ценны для изготовления прецизионных некорродирующих измерительных инструментов и хронометров, защищенных от намагничивания. Научное сообщество осталось в глубоком недоумении.

Фотоэлектрический эффект

Напряжение росло. Наступил 1921 г. Эйнштейна снова номинировали и снова в связи с теорией относительности. Других достойных кандидатов не было. На пути к Нобелевской премии, как и раньше, встал один из влиятельных членов Нобелевского комитета, офтальмолог Альвар Гульстранд.

Альвар Гульстранд (1862-1930) был не просто экстравагантным консервативным специалистом по глазным болезням. Ему принадлежала Нобелевская премия 1911 г. по физиологии и медицине. В 1894 г., после обучения в Упсале и Вене и практики в Стокгольме, он занял первую в Швеции кафедру глазных болезней в Упсальском университете. С 1914 г. он перешел на созданную специально для него кафедру Физической и физиологической оптики, которую занимал до выхода в отставку с получением звания заслуженного профессора в 1927 г. Альвар Гульстранд был талантливым физиком-самоучкой, основные интересы которого лежали в области преломления света в сложных оптических системах. Результатом его физических штудий стала теория преломления света в человеческом глазу и формирования изображения на сетчатке, охватывавшая как нормальное строение глаза, так и патологические изменения, включая астигматизм. На основании этой теории он усовершенствовал диагностическое оборудование и коррекционные линзы, способные компенсировать повреждение хрусталика в результате удаления катаракты. Многие из его работ по оптике глаза были отмечены национальными премиями. С 1911 по 1929 г. он был членом Нобелевского комитета по физике (с 1922 - его председателем).

Гульстранд, знаток классической геометрической оптики, имел собственное мнение по поводу как специальной, так и общей теории относительности. Он изо всех сил сопротивлялся присуждению Нобелевской премии Эйнштейну. Историк Роберт Фридман приводит слова Гульстранда, записанные в дневнике одного шведского математика: «Эйнштейн не должен получить Нобелевскую премию, даже если этого требует весь мир!» В результате его энергичного протеста, премия 1921 г. осталась в премиальном фонде.

Она вообще, возможно, так и не была бы присуждена Эйнштейну, если бы не другой шведский физик, профессор Упсальского университета, Карл Вильгельм Озеен (1879-1944). Его собственный вклад в науку был ограничен довольно специфической областью. Хотя его «Теория жидких кристаллов», опубликованная в 1933 г. в трудах Фарадеевского общества, до сих пор цитируется в специальной литературе, он мало известен за пределами узкого круга специалистов. Однако как профессор одного из университетов Швеции он мог принять участие в процессе номинирования кандидатов.

Как это часто бывает, Озеен искал решения для совсем другой «премиальной проблемы», но на этом пути ему посчастливилось найти нужную формулировку. Озеен собирался номинировать на премию Нильса Бора (1885-1962). Бор также был теоретиком и как физик-теоретик имел мало шансов в прагматически ориентированном Нобелевском комитете. Однако, связав вместе эйнштейновское объяснение фотоэффекта и боровскую модель атома водорода, Озеен создал замечательный тандем, противостоять которому было невозможно. Вместе они смотрелись как удачно дополняющие друг друга теории о строении вещества, прочно стоящие на солидном экспериментальном основании.

Судьба имеет странное, глубоко ироническое чувство юмора. Теория фотоэффекта представляет собой замечательную аллегорию на судьбу Нобелевской премии Эйнштейна. Как известно, нарастание интенсивности светового потока само по себе не может придать вылетающим электронам большую энергию. Для этого важна лишь частота излучения, поскольку именно с ней связана энергия квантов света - фотонов, поглощаемых электронами. Электрон может поглотить фотон подходящей энергии и перейти на более высокую орбиталь, а то и вообще покинуть атом, либо, если энергия фотона недостаточна, просто «не заметит» его. Вырваться в Нобелевские лауреаты Эйнштейну помог не рост числа номинаций, а то, что Озеен нашел верную формулировку, подобрал нужную частоту.

10 ноября 1922 г. было объявлено, что премия за 1921 г. присуждается Эйнштейну «за его заслуги в области теоретической физики, и в особенности, за объяснение фотоэлектрического эффекта». Одновременно с задержавшейся премией Эйнштейна, премия 1922 г. была присуждена Нильсу Бору «за его заслуги в исследовании строения атомов и излучения, испускаемого ими». Эйнштейн не приехал на церемонию вручения премии и традиционная застольная речь на банкете была зачитана от его имени представителем Германии, М. Надольны. Сам Эйнштейн в это время находился на пути в Японию, где ждали его лекций. О теории относительности. Не о фотоэлектрическом эффекте.

Короллярий

Вся эта давняя история, возможно, была бы не более, чем очередным занимательным историческим анекдотом, если бы не одно обстоятельство. В ней в очередной виден пример столкновения мнений международного научного сообщества и национальной академии.

Когда я писал эту заметку, то не думал о том, чтобы умалить заслуги Нобелевского комитета по созданию сложной системы оценки вклада ученых в развитие науки, или доказать, что члены Нобелевского комитета бывают необъективны и способны действовать по велению своих политических пристрастий или консервативных научных предубеждений. Однако мне кажется важным, что в этом, как и во многих других случаях, правда оказалась на стороне международного научного сообщества.

В постоянных дискуссиях о судьбах науки в современной России, нам, возможно, не мешало бы иногда не только оглядываться по сторонам, но и заглядывать в прошлое. Пусть скептики говорят, что его уроки никого ничему не учат. История учит тех, кто хочет у нее чему-то научиться. Мораль с историей Нобелевской премии Эйнштейна состоит в том, что в оценке вклада ученых в науку следовало бы опираться не на ведомственные, а на международные стандарты. Замкнутое национальное сообщество ученых, отгораживающееся от всего мира, умеет делать только одно - закосневать в своих заблуждениях. Случайный перевес консерваторов в академии может на долгие годы закрыть дорогу новым веяниям, если не ограничить ее произвол мощным противовесом. Весь вопрос в том, как услышать мнение сообщества, голос ученого народа, рассеянного по всему миру.

Альберт Эйнштейн несколько раз номинировался на Нобелевскую премию по физике, однако члены Нобелевского комитета долгое время не решались присудить премию автору такой революционной теории, как теория относительности. В конце концов был найден дипломатичный выход: премия за 1921 год была присуждена Эйнштейну за теорию фотоэффекта, то есть за наиболее бесспорную и хорошо проверенную в эксперименте работу; впрочем, текст решения содержал нейтральное добавление: «и за другие работы в области теоретической физики» .

«Как я уже сообщил Вам телеграммой, Королевская академия наук на своём вчерашнем заседании приняла решение присудить Вам премию по физике за прошедший (1921) год, отмечая тем самым Ваши работы по теоретической физике, в частности открытие закона фотоэлектрического эффекта, не учитывая при этом Ваши работы по теории относительности и теории гравитации, которые будут оценены после их подтверждения в будущем.»

Естественно, традиционную Нобелевскую речь Эйнштейн посвятил теории относительности.
В сентябре 1905 г. Альберт Эйнштейн публикует знаменитую работу «К электродинамике движущихся сред», посвященные теории, описывающей движение, законы механики и пространственно-временные отношения при скоростях движения, близких к скорости света. В последствии эта теория была названа специальной теорией относительности.

Многие учёные сочли «новую физику» чересчур революционной. Она отменяла эфир, абсолютное пространство и абсолютное время, пересматривала механику Ньютона, которая 200 лет служила опорой физики. Время в теории относительности течёт по-разному в разных системах отсчёта, инерция и длина зависят от скорости, движение быстрее света невозможно - все эти необычные следствия были неприемлемы для консервативной части научного сообщества.

Сам Эйнштейн относился к недоверию коллег с юмором, известно его высказывание во Французском философском обществе в Сорбонне, 6 апреля 1922 г: «Если теория относительности подтвердится, то немцы скажут, что я немец, а французы - что я гражданин мира; но если мою теорию опровергнут, французы объявят меня немцем, а немцы - евреем.»

В 1915 г. Эйнштейн создал математическую модель Общей теории относительности, рассматривающую искривление пространства и времени.
Новая теория предсказала два ранее неизвестных физических эффекта, вполне подтверждённые наблюдениями, а также точно и полностью объяснила вековое смещение перигелия Меркурия, долгое время приводившее в недоумение астрономов. После этого теория относительности стала практически общепризнанным фундаментом современной физики. Кроме того общая теория относительности нашла практическое применение в системах глобального позиционирования GPS, где расчёты координат производятся с очень существенными релятивистскими поправками.

Тезис о дискретности электромагнитного излучения, выдвинутый Эйнштейном в 1905 году позволил ему объяснить две загадки фотоэффекта: почему фототок возникал не при всякой частоте света, а только начиная с определённого порога, а энергия и скорость вылетающих электронов зависели не от интенсивности света, а только от его частоты. Теория фотоэффекта Эйнштейна с высокой точностью соответствовала опытным данным, что позднее подтвердили эксперименты Милликена (1916). Именно за эти научные открытия Эйнштейн и получил Нобелевскую премию.

Всем привет!

В данный момент я активно (ха) готовлюсь к защите минимума. Кто учился в докторантуре (аспирантуре), тот понимает о чём я. Для всех остальных: надеюсь, что вы не захотите испытать это на себе:). Ну так вот. Готовиться, понятное дело, мне совсем не хочется. Поэтому, решила написать для вас небольшую статью о Нобелевской премии Эйнштейна.

Где-то год назад я прочла биографию Альберта Эйнштейна от Уолтера Айзексона (книга просто супер, всем советую). Всю жизнь я была абсолютна уверена, что Эйнштейн получил Нобелевскую премию за теорию относительности. Но как оказалось это совсем не так.

Впервые Эйнштейн был номинирован на эту премию в 1910 году другим Нобелевским лауреатом Вильгельмом Оствальдом. Тот ссылался на специальную теорию относительности как на фундаментальную физическую теорию. Но члены Нобелевского комитета считали, что теория относительности не соответствует предписанию завещания Альфреда Нобеля. Поэтому отвечали, что следует дождаться эксперементального подтверждения этой теории.

В течение следующих десяти лет Эйнштейна продолжали номинировать за работу по созданию теории относительности. Но поддержки членов Академии он так и не получил.

В 1919 году наблюдение солнечного затмения в значительной мере подвердило теорию относительности. В этот момент Эйнштейн стал суперзвездой — самым известным учёным в международном маштабе. Но и тут его критики во главе с председателем Нобелевского комитета считали, что результаты наблюдения затмения неоднозначны.

В 1921 году Эйнштейн был очередной раз номинирован на Нобелевскую премию. Доклад о теории относительности поручили сделать шведскому профессору Гульстранду, лауреату Нобелевской премии по медицине за 1911 год. Он намеревался отклонить кандидатуру Эйнштейна. Поэтому подготовил доклад о несостоятельности теории относительности. Некоторые члены Академии отдавали себе отчёт, что возражения эти наивны. Но противостоять уважаемому профессору было нелегко. В результате, члены Академии проголосовали за то, чтобы не выбирать никого и перенести присуждение премии за 1921 год на другой год.

В этот момент отсутствие премии у Эйнштейна стало негативно сказываться на самой премии. Спасение пришло от физика-теоретика Карла Озеена. Он понимал, что история с теорией относительности зашла слишком далеко. Поэтому предложил присудить премию «за открытие закона фотоэлектрического эффекта» (здесь речь идёт о его более ранней работе).

Ну и в 1922 год Эйнштейну наконец-то вручили Нобелевскую премию. Самое примечательное в этой истории то, что даже в письме секретаря Академии, официально извещавшем Эйнштейна о присуждении премии, особо подчёркивалось, что премия присуждается «не принимая во внимание ваши теории относительности и гравитации, важность которых будет оценена после их подтвверждения».

Каждый знает Альберта Эйнштейна – это кудрявый старичок, показывающий миру язык.

Но личность ученого окутана многими загадками и спорами. Гений он или вор? Какое открытие его прославило, а за какое он получил Нобелевскую премию? Будем разбираться.

Эйнштейн – троечник ?

Многие нерадивые школьники часто оперируют тем фактом, что даже известный физик плохо учился в школе, оправдывая свою лень.

Но это лишь часть правды. Эйнштейн не закончил гимназию. Его не сильно увлекали многие предметы, поэтому преподаватели гуманитарных дисциплин были равнодушны к мальчику.

Но мальчик интересовался математикой и задавал вопросы, выходившие рамки за школьной программы.

В шестнадцать лет будущий физик уехал в город Павия близ Милана, где жила его семья. В том же 1895 году сдавал вступительные экзамены в Высшее техническое училище в Цюрихе , Швейцария.

Но его не приняли, а посоветовали окончить выпускной класс, чтобы получить аттестат. Спустя год он на отлично сдал почти все вступительные испытания и поступил.

Тернистый путь в науку

Учеба в училище давалась Эйнштейну легче. Но многие преподаватели недолюбливали будущего физика за его независимость и недоверие авторитетам, поэтому отказались поддерживать его в научной сфере.

Молодой человек голодал, потому что не мог устроиться на работу, но продолжал заниматься исследованиями.

В 1901 году в немецкий журнал «Аналы физики» опубликовал его статью «Следствия теории капиллярности» , в которой рассуждал о природе притяжения между атомами жидкости. Работа была достаточной смелой, так как тогда даже химики отрицали существование атомов.

Лишь в 1902 Эйнштейн устроился на работу в Бюро патентов , ему помогли рекомендации бывшего однокурсника и друга Марселя Гроссмана. Должность не только обеспечила его средствами достаточными для существования, но и дала возможность продолжать научную работу.

«Год чудес»

В 1905 году свет увидели три знаменательные работы Эйнштейна.

Теория относительности

К началу двадцатого века в физике назрели серьезные противоречия. Свойства электромагнитных волн не вписывались в классическую механику Ньютона. Еще в девятнадцатом веке был предложен эфир – некая гипотетическая среда, в которой распространяются электромагнитные волны.

Но его существование не было экспериментально доказано. Наоборот, на практике выяснялись очень противоречивые свойства этой среды: эфир должен быть очень упругим, но разряженным. Многие осознали, что в физике назрел кризис.

В 1905 году математик Пуанкаре вывел уравнения, описывающие теорию относительности , и назвал их преобразования Лоренца. Но он тоже не отказался от эфира.

И только Эйнштейн осмелился поставить его существование под сомнение. Теория относительности гласит, что в разных системах отсчета время течет по-разному , а скорость света величина постоянная и максимальная.

Теория перевернула классическую физику, потому что из нее следовали выводы, которые совершенно не вяжутся с привычным знанием о мире. Несмотря на значение этой работы, Нобелевскую премию физик получил не за нее. Это связано с тем, что долгое время не было доказательств теории Эйнштейна, а позже возникли проблемы с авторством из-за похожей работы Пуанкаре.

Квантовая теория

Мы привыкли, что теплота переходит от более нагретых тел к холодным. Но почему же тогда все теплые тела не светятся пока не остынут? Это и есть «Ультрафиолетовая катастрофа ».

Над решением этой проблемы в 1900 году Макс Планк предположил, что тела излучают тепло небольшими порциями, квантами , которые обладают разной частотой. Но физик не осмелился развивать свою теорию, считая ее математической необходимостью.

Она объясняла, почему скорость вылетающих с анода электронов зависит только от частоты света, а не от интенсивности излучения. За эту разработки в этой области в 1922 году ученый получил Нобелевскую премию .

Броуновское движение и начало статистики

Биолог Роберт Броун обнаружил, что легкая цветочная пыльца без причины движется в воде. В статье 1905 года Эйнштейн объяснил, основываясь на молекулярно-кинетической теории, природу этого движения.

Он понял, что хаотичное движение молекул воды приводит в движение маленькие частицы, попавшие в жидкость. Это же свойство объясняет диффузию – явление распределения примеси в сосуде. Позднее Эйнштейн описал другие характеристики молекул, предположил их размеры и заложил начало статистической механике.

Нобелевская премия

Как упоминалось ранее, Нобелевские премию Эйнштейну присвоили лишь в 1922 году , хотя номинировался он практически ежегодно начиная с 1910 года.

Его идеи были слишком революционными и опережали технические возможности на многие годы. Поэтому премию физик получил за работу над явлением фотоэффекта, где имелось больше экспериментальных данных.

Но речь он посвятил теории относительности. Интересный факт: все премиальные деньги ученый отдал своей первой жене , чтобы уладить бракоразводный процесс.