Open Library - открытая библиотека учебной информации. Прогнозирование

Идея экономического прогнозирования базируется на предположении, что закономерность развития, действовавшая в прошлом (внутри ряда экономической динамики), сохранится ив прогнозируемом будущем. В этом смысле прогноз основан на экстраполяции. Экстраполяция, проводимая в будущее, называется перспективной, а в прошлое - ретроспективной.

Прогнозирование методом экстраполяции базируется на следующих предположениях:

  • а) развитие исследуемого явления в целом описывается плавной кривой;
  • б) общая тенденция развития явления в прошлом и настоящем не указывает на серьезные изменения в будущем;
  • в) учет случайности позволяет оценить вероятность отклонения от закономерного развития.

Надежность и точность прогноза зависят от того, насколько близкими к действительности окажутся эти предположения и насколько точно удалось охарактеризовать выявленную в прошлом закономерность.

На основе построенной модели рассчитываются точечные и интервальные прогнозы.

Точечный прогноз для временных моделей получается подстановкой в модель (уравнение тренда) соответствующего значения фактора времени, т.е. t= п + 1, п + 2,..., п + к, где к - период упреждения.

Точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции, имеет малую вероятность. Возникновение соответствующих отклонений объясняется следующими причинами:

  • 1) выбранная для прогнозирования кривая не является единственно возможной для описания тенденции. Можно подобрать такую кривую, которая дает более точные результаты;
  • 2) прогноз осуществляется на основании ограниченного числа исходных данных. Кроме того, каждый исходный уровень обладает еще и случайной компонентой; поэтому и кривая, по которой осуществляется экстраполяция, также будет содержать случайную компоненту;
  • 3) тенденция характеризует движение среднего уровня ряда динамики, поэтому отдельные наблюдения могут от него отклоняться. Если такие отклонения наблюдались в прошлом, то они будут наблюдаться и в будущем.

Интервальные прогнозы строятся на основе точечных прогнозов. Доверительным интервалом называется такой интервал, относительно которого можно с заранее выбранной вероятностью утверждать, что он содержит значение прогнозируемого показателя. Ширина интервала зависит от качества модели (т.е. степени ее близости к фактическим данным), числа наблюдений, горизонта прогнозирования, выбранного пользователем уровня вероятности и других факторов.

При построении доверительного интервала прогноза рассчитывается величина U(k), которая для линейной модели имеет вид

где о е - стандартная ошибка (среднеквадратическое отклонение от линии тренда); п-р - число степеней свободы (для линейной модели у = a Q + a { t количество параметров р = 2).

Коэффициент / является табличным значением ^-статистики Стьюдента при заданном уровне значимости и числе наблюдений. (Примечание. Табличное значение t можно получить с помощью функции Excel стьюдраспобр.)

Для других моделей величина Щк) рассчитывается аналогичным образом, но имеет более громоздкий вид. Как видно из формулы (3.5.21), величина U(k) зависит прямо пропорционально от точности модели коэффициента доверительной вероятности / , степени углубления в будущее на к шагов вперед, т.е. на момент t=п + к, и обратно пропорциональна объему наблюдений.

Доверительный интервал прогноза будет иметь следующие границы:

Если построенная модель адекватна, то с выбранной пользователем вероятностью можно утверждать, что при сохранении сложившихся закономерностей развития прогнозируемая величина попадает в интервал, образованный верхней и нижней границами.

После получения прогнозных оценок необходимо убедиться в их разумности и непротиворечивости оценкам, полученным иным способом.

Пример 3.5.4. Финансовый директор АО «Веста» рассматривает целесообразность ежемесячного финансирования инвестиционного проекта со следующими объемами нетто-платежей, тыс. руб.:

  • 1. Определить линейную модель зависимости объемов платежей от сроков (времени).
  • 2. Оценить качество (т.е. адекватность и точность) построенной модели на основе исследования:
    • а) случайности остаточной компоненты по критерию «пиков»;
    • б) независимости уровней ряда остатков по ^w-критерию (в качестве критических значений использовать уровни d x = 1,08 и d 2 = 1,36) и по первому коэффициенту автокорреляции, критический уровень которого г(1) = 0,36;
    • в) нормальности распределения остаточной компоненты по /^-критерию с критическими уровнями 2,7-3,7;
    • г) средней по модулю относительной ошибки.
  • 3. Определить размеры платежей на три последующих месяца (построить точечный и интервальный прогнозы на три шага вперед (при уровне значимости 0,1), отобразить на графике фактические данные, результаты расчетов и прогнозирования).

Оценить целесообразность финансирования этого проекта, если в следующем квартале на эти цели фирма может выделить только 120 тыс. руб.

  • 1. Построение модели
  • 1) Оценка параметров модели с помощью надстройки Excel Анализ данных. Построим линейную модель регрессии Y от /. Для проведения регрессионного анализа выполните следующие действия:
    • ? Выберите команду Сервис => Анализ данных.
    • ? В диалоговом окне Анализ данных выберите инструмент Регрессия, а затем нажмите кнопку ок.
    • ? В диалоговом окне Регрессия в поле Входной интервал У введите адрес одного диапазона ячеек, который представляет зависимую переменную. В поле Входной интервал X введите адрес диапазона, который содержит значения независимой переменной t. Если выделены и заголовки столбцов, установите флажок Метки в первой строке.
    • ? Выберите параметры вывода (в данном примере - Новая рабочая книга).
    • ? В поле График подбора поставьте флажок.
    • ? В поле Остатки поставьте необходимые флажки и нажмите кнопку ОК.

Результат регрессионного анализа будет получен в виде, приведенном на рис. 3.5.11 и 3.5.12.

Рис. 3.5.11.

Второй столбец на рис. 3.5.11 содержит коэффициенты уравнения регрессии а 0 , a v

Кривая роста зависимости объемов платежей от сроков (времени) имеет вид

2) Оценка параметров модели «вручную». В табл. 3.5.8 приведены промежуточные расчеты параметров линейной модели по формулам (3.5.16). В результате расчетов получаем те же значения:


Рис. 3.5.12.

Таблица 3.5.8

y t

(t-T)(y,-y)

у, =a 0 + a x t

Иногда для проверки расчетов полезно проверить введенные формулы. Для этого следует выбрать команду Сервис => Параметры и поставить флажок в окне формулы (рис. 3.5.13).


Рис. 3.5.13.

После этого на листе Excel расчетные значения будут заменены соответствующими формулами и функциями (табл. 3.5.9).

  • 2. Оценка качества модели
  • 1) Для оценки адекватности построенных моделей исследуются свойства остаточной компоненты, т.е. расхождения уровней, рассчитанных по модели, и фактических наблюдений (табл. 3.5.10).

При проверке независимости (отсутствияавтокорреляции) определяется отсутствие в ряде остатков систематической составляющей, например, с помощью ^w-критерия Дарбина - Уотсона по формуле (3.4.8):

0t-T)(y t -y )

9t= а о + a x t

=$С$18 + $С$16*А2

=(АЗ - $А$14)

=(ВЗ - $В$14)

=$С$18 + $С$16*АЗ

=$С$18 + $С$16*А4

=$С$18 + $С$16*А5

=$С$18 + $С$16*А6

=$С$18 + $С$16*А7

=$С$18 + $С$16*А8

=$С$18 + $С$16*А9

=(А10 - $А$14)

=(В10 - $В$14)

=$С$18 + $С$16*А10

=$С$18 + $С$16*А11

=(А12 - $А$14)

=(В12 - $В$14)

=$С$18 + $С$16*А12

=$С$18 + $С$16*А13

СРЗНАЧ(Е2:Е13)

Номер

наблюдения

Точки

поворота

е]

( е Г е,-) 2

Так как dw" = 1,88 попало в интервал от d 2 до 2, то по данному критерию можно сделать вывод о выполнении свойства независимости (см. табл. 3.4.1). Это означает, что в ряде динамики не имеется автокорреляции, следовательно, модель по этому критерию адекватна.

Проверку случайности уровней ряда остатков проведем на основе критерия поворотных точек [см. формулу (3.5.18)]. Количество поворотных точекр при п = 12 равно 5 (рис. 3.5.14):

Неравенство выполняется (5 > 4). Следовательно, свойство случайности выполняется. Модель по этому критерию адекватна.

Соответствие ряда остатков нормальному закону распределения определим с помощью критерия:

где максимальный уровень ряда остатков е тах = 4,962, минимальный уровень ряда остатков e min = -5,283 (см. табл. 3.5.10), а среднеквадратическое отклонение


Рис. 3.5.14.

Получаем

Расчетное значение попадает в интервал (2,7-3,7), следовательно, выполняется свойство нормальности распределения. Модель по этому критерию адекватна.

Проверка равенства нулю математического ожидания уровней ряда остатков. В нашем случае ё = 0, поэтому гипотеза о равенстве математического ожидания значений остаточного ряда нулю выполняется.

Данные анализа ряда остатков приведены в табл. 3.5.11.

2) Для оценки точности модели вычислим среднюю относительную ошибку аппроксимации Е оти (табл. 3.5.12).

Получаем

Вывод: - хороший уровень точности модели.

Проверяемое

свойство

Используемая

статистика

Граница

Вывод

Наименова

Значение

верх

Независимость

^-критерий Дарбина - Уотсона

dw = 2,12 dw" = 4-2,12 = = 1,88

Адекватна

Случайность

Критерий

(поворотных

Адекватна

Нормальность

/^-критерий

Адекватна

Среднее е,= 0

/-статистика

Стьюдента

Адекватна

Вывод: модель статистически адекватна

Таблица 3.5.12

Номер

наблю

дения

Номер

наблю

дения

3. Построение точечного и интервального прогнозов на три шага вперед

Для вычисления точечного прогноза в построенную модель подставляем соответствующие значения фактора t = n + к:

Для построения интервального прогноза рассчитаем доверительный интервал. При уровне значимости а = 0,1 доверительная вероятность равна 90%, а критерий Стьюдента при v = п - 2 = 10 равен 1,812. Ширину доверительного интервала вычислим по формуле (3.5.21):

где (можно взять из протокола регрессионного анализа), / = 1,812 (табличное значение можно получить в Excel с помощью функции стьюдраспобр), Т = 6,5,

(находим из табл. 3.5.8);

Таблица 3.5.13

Прогноз

Верхняя граница

Нижняя граница

U( 1) = 6,80

Щ2) = 7,04

Ответ. Модель имеет вид Y(t) = 38,23 + 1,81/. Размеры платежей составят 61,77; 63,58; 65,40 тыс. руб. Следовательно, денежных средств в объеме 120 тыс. руб. на финансирование этого инвеста-


Рис. 3.5.15.

ционного проекта на три последующих месяца будет недостаточно, поэтому нужно либо изыскать дополнительные средства, либо отказаться от этого проекта.

Одна из основных задач, возникающих при экстраполяции тренда, заключается в определении доверительных интервалов прогноза. Интуитивно понятно, что в основу расчета доверительного интервала прогноза должен быть положен измеритель колеблемости ряда наблюдаемых значений признака. Чем выше эта колеблемость, тем менее определенно положение тренда в пространстве “уровень -- время” и тем шире должен быть интервал для вариантов прогноза при одной и той же степени доверия. Следовательно, при построении доверительного интервала прогноза следует учесть оценку колеблемости или вариации уровней ряда. Обычно такой оценкой является среднее квадратическое отклонение (стандартное отклонение) фактических наблюдений от расчетных, полученных при выравнивании динамического ряда.

Прежде чем приступить к определению доверительного интервала прогноза, необходимо сделать оговорку о некоторой условности рассматриваемого ниже расчета. То, что следует далее, является в некоторой мере произвольным перенесением результатов, найденных для регрессии выборочных показателей, на анализ динамических рядов. Дело в том, что предположение регрессионного анализа о нормальности распределения отклонений вокруг линии регрессии не может, по существу, безоговорочно утверждаться при анализе динамических рядов.

Полученные в ходе статистического оценивания параметры не свободны от погрешности, связанной с тем, что объем информации, на основе которой производилось оценивание, ограничен, и в некотором смысле эту информацию можно рассматривать как выборку. Во всяком случае смещение периода наблюдения только на один шаг или добавление, или устранение членов ряда в силу того, что каждый член ряда содержит случайную компоненту, приводит к изменению численных оценок параметров. Отсюда расчетные значения несут на себе груз неопределенности, связанной с ошибками в значении параметров.

В общем виде доверительный интервал для тренда определяется как

Если t = i + L то уравнение определит значение доверительного интервала для тренда, продленного на L единиц времени.

Доверительный интервал для прогноза, очевидно, должен учитывать не только неопределенность, связанную с положением тренда, но возможность отклонения от этого тренда. В практике встречаются случаи, когда более или менее обоснованно для экстраполяции можно применить несколько типов кривых. При этом рассуждения иногда сводятся к следующему. Поскольку каждая из кривых характеризует один из альтернативных трендов, то очевидно, что пространство между экстраполируемыми трендами и представляет собой некоторую “естественную доверительную область” для прогнозируемой величины. С таким утверждением нельзя согласиться. Прежде всего потому, что каждая из возможных линий тренда отвечает некоторой заранее принятой гипотезе развития. Пространство же между трендами не связано ни с одной из них -- через него можно провести неограниченное число трендов. Следует также добавить, что доверительный интервал связан с некоторым уровнем вероятности выхода за его границы. Пространство между трендами не связано ни с каким уровнем вероятности, а зависит от выбора типов кривых. К тому же при достаточно продолжительном периоде упреждения это пространство, как правило, становится настолько значительным, что подобный “доверительный интервал” теряет всякий смысл.

При условии учета стандартных ошибок оценок параметров уравнения тренда (которые по определению являются выборочными, а следовательно, могут не являться оценками неизвестных генеральных параметров из-за проявления случайной ошибки репрезентативности), и не рассматривая последовательность преобразований получим общую формулу доверительного интервала прогноза.

где - значение прогноза, рассчитанного по уравнению тренда на период t+L

Средняя квадратическая ошибка тренда;

К - коэффициент, учитывающий ошибки коэффициентов уравнения тренда

Значение t-статистики Стьюдента.

Коэффициент К рассчитывается следующим образом

n ? число наблюдений (длина ряда динамики);

L - число прогнозов

Значение К зависит только от п и L, т. е. продолжительности наблюдения и периода прогнозирования.

Если при анализе развития объекта прогноза есть основания принять два базовых допущения экстраполяции, то процесс экстраполяции заключается в подстановке соответствующей величины периода упреждения в формулу, описывающую тренд. Причем, если по каким-либо соображениям при экстраполяции удобнее начало отсчета времени установить на момент, отличающийся от начального момента, принятого при оценивании параметров уравнения, то для этого в соответствующем многочлене достаточно изменить постоянный член. Так в уравнении прямой при сдвиге начала отсчета времени на т лет вперед постоянный член будет равен a + bm, для параболы второй степени он составит величину а + bт + ст2.

Экстраполяция, вообще говоря, дает точечную прогностическую оценку. Интуитивно ощущается недостаточность такой оценки и необходимость получения интервальной оценки с тем, чтобы прогноз, охватывая некоторый интервал значений прогнозируемой переменной, был бы более надежным. Как уже сказано выше, точное совпадение фактических данных и прогностических точечных оценок, полученных путем экстраполяции кривых, характеризующих тенденцию, - явления маловероятное. Соответствующая погрешность имеет следующие источники: выбор формы кривой, характеризующей тренд, содержит элемент субъективизма. Во всяком случае, часто нет твердой основы для того, чтобы утверждать, что выбранная форма кривой является единственно возможной или тем более наилучшей для экстраполяции в данных конкретных условиях;

  • 1. оценивание параметров кривых (иначе говоря, оценивание тренда) производится на основе ограниченной совокупности наблюдений, каждое из которых содержит случайную компоненту. В силу этого параметрам кривой, а, следовательно, и ее положению о пространстве свойственна некоторая неопределенность;
  • 2. тренд характеризует некоторый средний уровень ряда, на каждый момент времени. Отдельные наблюдения, как правило, отклонялись от него в прошлом. Естественно ожидать, что подобного рода отклонения будут происходить и в будущем.

Погрешность, связанная со вторым и третьим ее источником, может быть отражена в виде доверительного интервала прогноза при принятии некоторых допущений о свойстве ряда. С помощью такого интервала точечный экстраполяционный прогноз преобразуется в интервальный. Вполне возможны случаи, когда форма кривой, описывающей тенденцию, выбрана неправильно или когда тенденция развития в будущем может существенно изменяться и не следовать тому типу кривой, который был принят при выравнивании. В последнем случае основное допущение экстраполяции не соответствует фактическому положению вещей. Найденная кривая лишь выравнивает динамический ряд и характеризует тенденцию только в пределах периода, охваченного наблюдением. Экстраполяция такого тренда неизбежно приведет к ошибочному результату, причем ошибку такого рода нельзя оценить заранее. В связи с этим можно лишь отметить то, что, по-видимому, следует ожидать рост такой погрешности (или вероятности ее возникновения) при увеличении периода упреждения прогноза. Одна из основных задач, возникающих при экстраполяции тренда, заключается в определении доверительных интервалов прогноза. Интуитивно понятно, что в основу расчета доверительного интервала прогноза должен быть положен измеритель колеблемости ряда наблюдаемых значений признака. Чем выше эта колеблемость, тем менее определенно положение тренда в пространстве "уровень - время" и тем шире должен быть интервал для вариантов прогноза при одной и той же степени доверия. Следовательно, вопрос о доверительном интервале прогноза следует начать с рассмотрения измерителя колеблемости. Обычно такой измеритель определяют в виде среднего квадратического отклонения (стандартного отклонения) фактических наблюдений от расчетных, полученных при выравнивании динамического ряда. В общем виде среднее квадратическое отклонение от тренда можно выразить как:

В общем виде доверительный интервал для тренда определяется как:

Если t = i + L, то уравнение определит значение доверительного интервала для тренда, продленного на L единиц времени. Доверительный интервал для прогноза, очевидно должен учитывать не только неопределенность, связанную с положением тренда, но возможность отклонения от этого тренда. В практике встречаются случаи, когда более или менее обоснованно для экстраполяции можно применить несколько типов кривых. При этом рассуждения иногда сводятся к следующему. Поскольку каждая из кривых характеризует один из альтернативных трендов, то очевидно, что пространство между экстраполируемыми трендами представляет собой некоторую естественную доверительную область для прогнозируемой величины. С таким утверждением нельзя согласиться.

Прежде всего потому, что каждая на возможных линий тренда отвечает некоторой заранее принятой гипотезе развития. Пространство же между трендами не связано ни с одной из них - через него можно провести неограниченное число трендов. Следует также добавить, что доверительный интервал связан с некоторым уровнем вероятности выхода за его границы. Пространство между трендами не связано ни с каким уровнем вероятности, а зависит от выбора типов кривых. К тому же при достаточно продолжительном периоде упреждения это пространство, как правило, становится настолько значительным, что подобный доверительный интервал теряет всякий смысл.


Рисунок 2 - Поиск максимального интервала корреляции

Анимация: Кадров: 20, Количество повторений: 7, Объем: 55,9 Кб

Для сравнения качества решения задач прогнозирования при традиционном и предлагаемом подходе используются доверительные интервалы прогноза для линейного тренда. В качестве примера анализа влияния качественных характеристик временных рядов на глубину прогноза были взяты три временных ряда размерностью n равной 30 с различными колеблемостями вокруг тренда. В итоге вычислений значений площади участков кривых выборочных автокорреляционных функций получились следующие оценки для оптимальной глубины прогноза: для слабоколеблемого ряда - 9 уровней, для среднеколеблемого - 3 уровня, для сильноколеблемого - 1 уровень (Рисунок


Рисунок 3 - Полученные результаты оценки глубины прогноза

Анализ результатов показывает, что даже при средней колеблемости значений ряда вокруг тренда доверительный интервал оказывается весьма широким (при доверительной вероятности 90%) для периода упреждения, превышающего расчетный предлагаемым способом. Уже для упреждения на 4 уровня доверительный интервал составил почти 25% расчетного уровня. Довольно быстро экстраполяция приводит к неопределенным в статистическом смысле результатам. Это доказывает возможность применения предложенного подхода.

Поскольку выше расчет проводился основываясь на оценках величин, представляется возможным построить зависимость оценки глубины экономического прогноза от значений его базы, задав значения временного лага k и соответствующие им значения глубины экономического прогноза.

Таким образом, предложенный новый подход к оценке глубины экономического прогноза синтезирует количественную и качественную характеристики исходных значений динамического ряда и позволяет обоснованно с математической точки зрения задавать период упреждения для экстраполируемых временных рядов.

прогноз экстраполяция стратегическое планирование

Доверительные интервалы прогноза

Тема 8. Доверительные интервалы прогноза. Оценка адекватности и точности моделей

Прогнозные значения исследуемого показателя вычисляют путем подстановки в уравнение кривой значений времени t, соответствующих периоду упреждения. Полученный таким образом прогноз называется точечным прогнозом . На практике в дополнение к точечному определяют границы возможного значения прогнозированного показателя, то есть вычисляют интервальный прогноз.

Несовпадение фактических данных с точечным прогнозом может быть вызвано:

1) субъективной ошибочностью выбора вида кривой;

2) погрешностью оценивания параметров кривых;

3) погрешностью, связанной с отклонением отдельных наблюдений от тренда.

Погрешность, связанная со вторым и третьим источником, может быть отражена в виде доверительного интервала прогноза. Доверительный интервал прогноза определяется в следующем виде:

Ширина доверительного интервала зависит от уровня значимости, периода упреждения, среднего квадратического отклонения от тренда и степени полинома. Чем выше степень полинома, тем шире доверительный интервал при одном и том же значении Sр, так как дисперсия уравнения тренда вычисляется как взвешенная сумма дисперсий соответствующих параметров уравнения

Доверительные интервалы прогнозов, полученных с использованием уравнения экспоненты, определяют аналогичным образом. Отличие состоит в том, что как при вычислении параметров кривой, так и при вычислении средней квадратической ошибки используют не сами значения уровней временного ряда, а их логарифмы.

По такой же схеме могут быть определены доверительные интервалы для ряда кривых, имеющих асимптоты, в случае, если значение асимптоты известно (например, для модифицированной экспоненты).

Проверка адекватности выбранных моделей реальному процессу строится на анализе случайной компоненты. Случайная (остаточная) компонента получается после выделения из исследуемого ряда тренда и периодической составляющей. Предположим, что исходный временной ряд описывает процесс, не подверженный периодическими колебаниями, то есть примем гипотезу об аддитивной модели временного ряда:

Тогда ряд случайной компоненты будет получен как отклонение фактических уровней временного ряда (yt) от выровненных, расчетных

При правильном выборе вида тренда отклонения от него будут носить случайный характер. Это означает, что изменение остаточной случайной величины не связано с изменением времени. Таким образом, по выборке, полученной для всех моментов времени на изучаемом интервале, проверяется гипотеза о зависимости последовательности значений et от времени, или, что то же самое, о наличии тенденции в ее изменении. Поэтому для проверки данного свойства может быть использован один из критериев, например, критерий серий.

Если вид функции, описывающей тренд, выбран неудачно, то последовательные значения ряда остатков могут не обладать свойствами независимости, так как они могут коррелировать между собой. В этом случае имеет место явление автокорреляции.

В условиях автокорреляции оценки параметров модели будут обладать свойствами несмещенности и состоятельности .

Существует несколько приемов обнаружения автокорреляции. Наиболее распространенным является метод, предложенный Дарбиным и Уотсоном.

Критерий Дарбина-Уотсона связан с гипотезой о существовании автокорреляции первого порядка (то есть между соседними остаточными уровнями ряда). Значение этого критерия определяется по формуле:

d=

Можно показать, что величина d приближенно равна:

где r1- коэффициент автокорреляции первого порядка (т.е. парный коэффициент корреляции между двумя рядами e1, e2, ... ,en-1 и e2, e3, ..., en).

Из последней формулы видно, что если в значениях et имеется сильная положительная автокорреляция ,то величина d=0 , в случае сильной отрицательной автокорреляции d=4. При отсутствии автокорреляции .

Для этого критерия найдены критические границы, позволяющие принять или отвергнуть гипотезу об отсутствии автокорреляции. Авторами критерия границы определены для 1, 2,5 и 5% уровней значимости.

Рассчитанные значения d сравнивают с табличными значениями. Здесь (в таблице): d1 и d2 - соответственно нижняя и верхняя доверительная граница критерия d;

К – число переменных в модели

n – длина ряда.

При сравнении величины d с d1 и d2 возможны следующие ситуации:

2) d< d2, то гипотеза об отсутствии автокорреляции отвергается;

3) d> d2, то гипотеза об отсутствии автокорреляции не отвергается;

4) d1≤ d≤ d2, то нет достаточных основании для принятия решений, величина попадает в область неопределенности.

Рассмотренные варианты относятся к случаю, когда в остатках имеется положительная автокорреляция. Когда же расчетное значение d превышает 2, то можно говорить о том, что в et существует отрицательная автокорреляция. Для проверки отрицательной автокорреляции с критическими значениями d1 и d2 сравнивается не сам коэффициент d, а 4-d.

Поскольку временные ряды экономических показателей, как правило, небольшие, то проверка распределения на нормальность может быть произведена лишь приближенно на основе исследования показателей ассиметрии и эксцесса .

При нормальном распределении показатели ассиметрии и эксцесса равны нулю.

Э=

Если одновременно выполняются следующие неравенства:

,

то гипотеза о нормальном характере распределения случайной компоненты не отвергается.

Если выполняется хотя бы одно из следующих неравенств:

,

то гипотеза о нормальном характере распределения отвергается.

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Планирование и прогнозирование

в условиях рынка»

на тему: Доверительные интервалы прогноза

Оценка адекватности и точности моделей


Глава 1. Теоретическаячасть

Доверительные интервалы прогноза. Оценка адекватности и точности моделей

1.1 Доверительные интервалы прогноза

Заключительным этапом применения кривых роста является экстраполяция тенденции на базе выбранного уравнения. Прогнозные значения исследуемого показателя вычисляют путем подстановки в уравнение кривой значений времени t , соответствующих периоду упреждения. Полученный таким образом прогноз называют точечным, так как для каждого момента времени определяется только одно значение прогнозируемого показателя.

На практике в дополнении к точечному прогнозу желательно определить границы возможного изменения прогнозируемого показателя, задать "вилку" возможных значений прогнозируемого показателя, т.е. вычислить прогноз интервальный.

Несовпадение фактических данных с точечным прогнозом, полученным путем экстраполяции тенденции по кривым роста, может быть вызвано:

1. субъективной ошибочностью выбора вида кривой;

2. погрешностью оценивания параметров кривых;

3. погрешностью, связанной с отклонением отдельных наблюдений от тренда, характеризующего некоторый средний уровень ряда на каждый момент времени.

Погрешность, связанная со вторым и третьим источником, может быть отражена в виде доверительного интервала прогноза. Доверительный интервал, учитывающий неопределенность, связанную с положением тренда, и возможность отклонения от этого тренда, определяется в виде:


где n- длина временного ряда;

L -период упреждения;

y n + L -точечный прогноз на момент n+L;

t a - значение t-статистики Стьюдента;

S p - средняя квадратическая ошибка прогноза.

Предположим, что тренд характеризуется прямой:

Так как оценки параметров определяются по выборочной совокупности, представленной временным рядом, то они содержат погрешность. Погрешность параметра а о приводит к вертикальному сдвигу прямой, погрешность параметра a 1 - к изменению угла наклона прямой относительно оси абсцисс. С учетом разброса конкретных реализаций относительно линий тренда, дисперсию можно представить в виде:

(1.2.),

где - дисперсия отклонений фактических наблюдений от расчетных;

t 1 - время упреждения, для которого делается экстраполяция;

t 1 = n + L ;

t - порядковый номер уровней ряда, t = 1,2,..., n;

Порядковый номер уровня, стоящего в середине ряда,

Тогда доверительный интервал можно представить в виде:

(1.3.),

Обозначим корень в выражении (1.3.) через К. Значение К зависит только от n и L, т.е. от длины ряда и периода упреждения. Поэтому можно составить таблицы значений К или К*= t a K . Тогда интервальная оценка будет иметь вид:

(1.4.),

Выражение, аналогичное (1.3.), можно получить для полинома второго порядка:

(1.5.),

(1.6.),

Дисперсия отклонений фактических наблюдений от расчетных определяется выражением:


(1.7.),

где y t - фактические значения уровней ряда,

Расчетные значения уровней ряда,

n - длина временного ряда,

k - число оцениваемых параметров выравнивающей кривой.

Таким образом, ширина доверительного интервала зависит от уровня значимости, периода упреждения, среднего квадратического отклонения от тренда и степени полинома.

Чем выше степень полинома, тем шире доверительный интервал при одном и том же значении S y , так как дисперсия уравнения тренда вычисляется как взвешенная сумма дисперсий соответствующих параметров уравнения

Рисунок 1.1. Доверительные интервалы прогноза для линейного тренда

Доверительные интервалы прогнозов, полученных с использованием уравнения экспоненты, определяют аналогичным образом. Отличие состоит в том, что как при вычислении параметров кривой, так и при вычислении средней квадратической ошибки используют не сами значения уровней временного ряда, а их логарифмы.

По такой же схеме могут быть определены доверительные интервалы для ряда кривых, имеющих асимптоты, в случае, если значение асимптоты известно (например, для модифицированной экспоненты).

В таблице 1.1. приведены значения К* в зависимости от длины временного ряда n и периода упреждения L для прямой и параболы. Очевидно, что при увеличении длины рядов (n ) значения К* уменьшаются, с ростом периода упреждения L значения К* увеличиваются. При этом влияние периода упреждения неодинаково для различных значений n : чем больше длина ряда, тем меньшее влияние оказывает период упреждения L .

Таблица 1.1.

Значения К* для оценки доверительных интервалов прогноза на основе линейного тренда и параболического тренда при доверительной вероятности 0,9 (7).

Линейный тренд Параболический тренд
Длина ряда (п)

Период упреждения (L)

длина ряда (п)

период упреждения (L)

7 2,6380 2,8748 3,1399 7 3,948 5,755 8,152
8 2,4631 2,6391 2,8361 8 3,459 4,754 6,461
9 2,3422 2,4786 2,6310 9 3,144 4,124 5,408
10 2,2524 2,3614 2,4827 10 2,926 3,695 4,698
11 2,1827 2,2718 2,3706 11 2,763 3,384 4,189
12 2,1274 2,2017 2,2836 12 2,636 3,148 3,808
13 2,0837 2,1463 2,2155 13 2,536 2,965 3,516
14 2,0462 2,1000 2,1590 14 2,455 2,830 3,286
15 2,0153 2,0621 2,1131 15 2,386 2,701 3,100
16 1,9883 2,0292 2,0735 16 2,330 2,604 2,950
17 1,9654 2,0015 2,0406 17 2,280 2,521 2,823
18 1,9455 1,9776 2,0124 18 2,238 2,451 2,717
19 1,9280 1,9568 1,9877 19 2,201 2,391 2,627
20 1,9117 1,9375 1,9654 20 2,169 2,339 2,549
21 1,8975 1,9210 1,9461 21 2,139 2,293 2,481
22 1,8854 1,9066 1,9294 22 2,113 2,252 2,422
23 1,8738 1,8932 1,9140 23 2,090 2,217 2,371
24 1,8631 1,8808 1,8998 24 2,069 2,185 2,325
25 1,8538 1,8701 1,8876 25 2,049 2,156 2,284

Глава 2. Практическая часть

Задание 1.5. Использование адаптивных методов в экономическом прогнозировании

1. Рассчитать экспоненциальную среднюю для временного ряда курса акций фирмы ЮМ. В качестве начального значения экспоненциальной средней взять среднее значение из 5 первых уровней ряда. Значение параметра адаптации а принять равным 0,1.

Таблица 1.2.

Курс акций фирмы IBM

t y t t y t t y t
1 510 11 494 21 523
2 497 12 499 22 527
3 504 13 502 23 523
4 510 14 509 24 528
5 509 15 525 25 529
6 503 16 512 26 538
7 500 17 510 27 539
8 500 18 506 28 541
9 500 19 515 29 543
10 495 20 522 30 541

2. По данным задания №1 рассчитать экспоненциальную среднюю при значении параметра адаптации а равным 0,5. Сравнить графически исходный временной ряд и ряды экспоненциальных средних, полученные при а =0,1 и а =0,5. Указать, какой ряд носит более гладкий характер.

3. Прогнозирование курса акций фирмы IBM осуществлялось на основе адаптивной полиномиальной модели второго порядка


,

где - период упреждения.

На последнем шаге получены следующие оценки коэффициентов:

На 1 день вперед (=1);

На 2 дня вперед (=2).

Решение задания 1.5

1. Определим

Найдем значения экспоненциальной средней при а =0,1.

. а =0,1 – по условию;

; S 1 = 0,1 х 510 + 0,9 х 506 = 506,4;

; S 2 = 0,1 х 497 + 0,9 х 506,4 = 505,46;

; S 3 = 0,1 х 504 + 0,9 х 505,46 = 505,31 и т.д.

а =0,5 – по условию.

; S 1 = 0,5 х 510 + 0,5 х 506 = 508;

; S 2 = 0,5 х 497 + 0,5 х 508 = 502,5 и т.д.

Результаты расчетов представлены в таблице 1.3.

Таблица 1.3.

Экспоненциальные средние

t Экспоненциальная средняя t Экспоненциальная средняя
а =0,1 а =0,5 а =0,1 а =0,5
1 506,4 508 16 505,7 513,3
2 505,5 502,5 17 506,1 511,7
3 505,3 503,2 18 506,1 508,8
4 505,8 506,6 19 507,0 511,9
5 506,1 507,8 20 508,5 517
6 505,8 505,4 21 509,9 520
7 505,2 502,7 22 511,6 523,5
8 504,7 501,4 23 512,8 523,2
9 504,2 500,7 24 514,3 525,6
10 503,4 497,8 25 515,8 527,3
11 502,4 495,9 26 518,0 532,7
12 502,0 497,5 27 520,1 525,8
13 502,0 499,7 28 522,2 538,4
14 502,7 504,4 29 524,3 540,7
15 505,0 514,7 30 525,9 540,9

Рисунок 1.2. Экспоненциальное сглаживание временного ряда курса акций: А – фактические данные; В – экспоненциальная средняя при альфа = 0,1; С – экспоненциальная средняя при альфа = 0,5

При а =0,1 экспоненциальная средняя носит более гладкий характер, т.к. в этом случае в наибольшей степени поглощаются случайные колебания временного ряда.

3. Прогноз по адаптивной полиномиальной модели второго порядка формируется на последнем шаге, путем подстановки в уравнение модели последних значений коэффициентов и значения - времени упреждения.

Прогноз на 1 день вперед (= 1):

Прогноз на 2 дня вперед (= 2):

Список используемой литературы

1. Дуброва Т.А. Статистические методы прогнозирования в экономике: Учебное пособие / Московский государственный университет экономики, статистики и информатики. – М.: МЭСИ, 2003. – 52с.

2. Афанасьев В.Н., Юзбашев М.М. Анализ временных рядов и прогнозирование М.: Финансы и статистика, 2001.

3. Лукашин Ю.П. Регрессионные и адаптивные методы прогнозирования. Учебное пособие. – М.: МЭСИ, 1997.