Последовательное соединение светодиодов. Хорошие и плохие схемы включения светодиодов Схема поочередного включения светодиодов

Электроустановочные компоненты представляют собой специальные изделия, обеспечивающие бесперебойное функционирование электросистем. Подобные элементы широко применяются на промышленных предприятиях при прокладке, ремонте и протяжке кабеля, а также во время подключения электрооборудования. Известные производители Hensel, Mennekes, Weidmueller, Wieland изготавливают продукцию в соответствии с основными требованиями европейских стандартов качества и безопасности.

Разновидности электроустановочных компонентов

Компания ООО «Индатэк» представляет широкий ассортимент изделий для установки электросистем на предприятии. В качестве материала для изготовления токопроводящих изделий применяется медь, а для изолирующих - керамические или фарфоровые смеси. В остальных случаях используют металлические сплавы с защитным покрытием из цинка или никеля.

Продукция для установки электросистем характеризуется устойчивостью к воздействию воды, коррозии, резким перепадам температуры. Подобные элементы отвечают нормам безопасности и безвредны для человека. В процессе производства изделия тестируются на качество при помощи свободно падающего груза массой в 0,25 кг. Вилки, удлинительные розетки, выключатели дополнительно испытываются на падение с 0,5 м во вращающихся барабанах.

Электроустановочные компоненты делятся на группы в зависимости от:

– степени прочности - изделия, которые выдерживают воздействие груза, падающего с высоты 15 см, 25 см и 50 см;

– типа подключения - внешние, которые крепятся на поверхность конструкции, и встраиваемые, которые нуждаются в специальной нише.

– устойчивости к температуре - изделия, выдерживающие нагрев до + 80, + 100, + 130, + 160, + 240 градусов.

Клеммы

Клеммы Wieland служат для соединения проводов и кабелей различного типа. Строительные - выдерживают нагрузку 10–100 А и напряжение в 600 В. Более стойкими являются барьерные клеммы, работающие под напряжением в 1 кВ и нагрузкой до 200 А. Изделия с пружинной и винтовой такие, как модели WT 2,5 или WKF 1,5 D2/2/35 BLAU , фиксацией обеспечивают более крепкий зажим провода.

Ответвительные коробки и корпуса

Изделия используются при монтаже электросистем и подключении нескольких приборов к одному источнику энергии. Подобная продукция обеспечивает качественное заземление, преобразование, распределение электроэнергии во всей системе. В качестве основного материала для производства выступает поликарбонат. Популярным изготовителем считается немецкая компания Hensel, продукция которой представлена в интернет-магазине indatech.ru.

Силовые разъёмы

Изделия представляют собой устройства, служащие для подключения электрооборудования к энергосети. Розетки и вилки рекомендуется использовать при работе с мощной техникой в помещении высокой влажности и прочих неблагоприятных условиях.

Концентраторы сигналов (SAI)

Концентраторы сигналов (SAI), например гнезда SAISW-3/7 и соединительные разъемы SAIL-M12GM12W-4-2L3.0T , необходимы для нормальной работы систем автоматизации. Продукция подразделяется на активные и пассивные шины, а также силовые провода и разъёмы. Подобные товары могут быть предназначены для работы в экстремальных условиях: изделия с защитой IP67 выдерживают воздействие воды и вредных веществ. Некоторые концентраторы SAI применяются для взрывоопасных работ.

В предыдущих статьях были описаны различные вопросы подключения светодиодов. Но в одной статье всего не написать, поэтому придется эту тему продолжить. Здесь речь пойдет о различных способах включения светодиодов.

Как было сказано в упомянутых статьях, т.е. ток через него должен быть ограничен с помощью резистора. Как рассчитать этот резистор, было уже рассказано, повторяться здесь не будем, но формулу, на всякий случай, приведем еще раз.

Рисунок 1.

Здесь Uпит. - напряжение питания, Uпад. - падение напряжение на светодиоде, R - сопротивление ограничивающего резистора, I - ток через светодиод.

Однако, несмотря на всю теорию, китайская промышленность выпускает всевозможные сувениры, брелоки, зажигалки, в которых светодиод включен без ограничительного резистора: просто две-три дисковых батарейки и один светодиод. В этом случае ток ограничивается внутренним сопротивлением батареи, мощности которой просто не хватает, чтобы спалить светодиод.

Но тут, кроме перегорания, есть и еще одно неприятное свойство - деградация светодиодов, более всего присущее светодиодам белого и синего цветов: через некоторое время яркость свечения становится совсем незначительной, хотя ток через светодиод протекает вполне достаточный, на уровне номинального.

Нельзя сказать, что не светит вовсе, свечение еле заметно, но это уже не фонарик. Если при номинальном токе деградация происходит не ранее, чем через год непрерывного свечения, то при завышенном токе дождаться этого явления можно через полчаса. Такое включение светодиода следует назвать плохим.

Подобную схему можно объяснить лишь стремлением сэкономить на одном резисторе, припое, и трудозатратах, что при массовых масштабах производства, видимо, оправдано. Кроме того, зажигалка или брелок вещь одноразовая, копеечная: кончился газ или села батарейка - сувенир просто выкинули.

Рисунок 2. Схема плохая, но применяется достаточно часто.

Очень интересные вещи получаются (конечно, случайно), если по такой схеме подключить светодиод к блоку питания с выходным напряжением 12В и током не менее 3А: происходит ослепительная вспышка, раздается достаточно громкий хлопок, дымок, и остается удушливый запах. Так и вспоминается вот такая притча: «Можно ли посмотреть на Солнце в телескоп? Да, но только два раза. Один раз левым глазом, другой правым». Кстати, подключение светодиода без ограничительного резистора наиболее распространенная ошибка у начинающих, и о ней хотелось бы предупредить.

Чтобы исправить это положение, продлить срок службы светодиода, схему следовало бы чуточку изменить.

Рисунок 3. Хорошая схема, правильная.

Именно такую схему следует считать хорошей или правильной. Чтобы проверить, правильно ли указан номинал резистора R1, можно воспользоваться формулой, показанной на рисунке 1. Будем считать, что падение напряжения на светодиоде 2В, ток 20мА, напряжение питания 3В обусловлено применением двух пальчиковых батареек.

А вообще не надо стремиться ограничить ток на уровне предельно допустимых 20мА, можно запитать светодиод меньшим током, ну, хотя бы, миллиампер 15…18. При этом произойдет совсем незначительное уменьшение яркости, который глаз человека, в силу особенностей устройства, не заметит совсем, а вот срок службы светодиода намного увеличится.

Еще один пример плохого включения светодиодов можно встретить в различных фонариках, уже более мощных, нежели брелоки и зажигалки. В этом случае некоторое количество светодиодов, иногда достаточно большое, просто включено параллельно, и тоже без ограничительного резистора, в роли которого опять же выступает внутреннее сопротивление батареи. Такие фонарики достаточно часто попадают в ремонт именно по причине выгорания светодиодов.

Рисунок 4. Совсем плохая схема включения.

Казалось бы, исправить положение может схема, показанная на рисунке 5. Всего один резистор, и дело, казалось бы, пошло на поправку.

Рисунок 5. Так уже немного лучше.

Но и такое включение поможет мало. Дело в том, что в природе просто не найти двух одинаковых полупроводниковых приборов. Именно поэтому, например, транзисторы одного типа имеют различный коэффициент усиления, даже если они из одной производственной партии. Тиристоры и симисторы тоже бывают разные. Некоторые открываются легко, а другие настолько тяжко, что от их применения приходится отказаться. То же можно сказать и о светодиодах - двух абсолютно одинаковых, тем более трех или целой кучи, найти просто невозможно.

Замечание на тему. В DataSheet на светодиодную сборку SMD-5050 (три независимых светодиода в одном корпусе) включение, показанное на рисунке 5, не рекомендуется. Мол, из-за разброса параметров отдельных светодиодов, может быть заметна разница в их свечении. А казалось бы, в одном корпусе!

Никакого коэффициента усиления у светодиодов, конечно же, нет, зато есть такой важный параметр, как прямое падение напряжения. И если даже светодиоды взяты из одной технологической партии, из одной упаковки, то двух одинаковых в ней просто не будет. Поэтому ток у всех светодиодов будет разный. Тот светодиод, у которого ток будет больше всех, и рано или поздно превысит номинальный, сгорит раньше всех.

В связи с этим прискорбным событием весь возможный ток пойдет через два оставшихся в живых светодиода, естественно, превышая номинальный. Ведь резистор-то рассчитывался «на троих», на три светодиода. Повышенный ток вызовет и повышенный нагрев кристаллов светодиодов, и тот, который окажется «слабее», тоже сгорает. Последнему светодиоду также не остается ничего иного, как последовать примеру своих товарищей. Такая вот цепная реакция получается.

В данном случае под словом «сгорит» подразумевается просто разрыв цепи. Но может произойти, что в одном из светодиодов получится элементарно короткое замыкание, шунтирующее остальные два светодиода. Естественно, что они обязательно погаснут, хотя и останутся в живых. Резистор при такой неисправности будет усиленно греться и в конце концов, может быть, сгорит.

Чтобы такого не произошло, схему надо немного изменить: для каждого светодиода установить свой резистор, что и показано на рисунке 6.

Рисунок 6. А вот так светодиоды прослужат очень долго.

Здесь все, как требуется, все по правилам схемотехники: ток каждого светодиода будет ограничен своим резистором. В такой схеме токи через светодиоды не зависят друг от друга.

Но и это включение не вызывает особого восторга, поскольку количество резисторов равно количеству светодиодов. А хотелось бы, чтобы светодиодов было побольше, а резисторов поменьше. Как же быть?

Выход из этого положения достаточно простой. Каждый светодиод надо заменить цепочкой последовательно включенных светодиодов, как показано на рисунке 7.

Рисунок 7. Параллельное включение гирлянд.

Платой за такое усовершенствование будет увеличение напряжения питания. Если для одного светодиода достаточно всего трех вольт, то даже два светодиода, включенных последовательно, от такого напряжения уже не зажечь. Так какое же напряжение понадобится для включения гирлянды из светодиодов? Или по-другому, сколько светодиодов можно подключить к источнику питания с напряжением, например, 12В?

Замечание. Под названием «гирлянда» здесь и далее следует понимать не только елочное украшение, но также любой осветительный светодиодный прибор, в котором светодиоды соединены последовательно или параллельно. Главное, что светодиод не один. Гирлянда, она и в Африке гирлянда!

Чтобы получить ответ на этот вопрос, достаточно напряжение питания просто разделить на падение напряжения на светодиоде. В большинстве случаев при расчетах это напряжение принимается 2В. Тогда получается 12/2=6. Но не надо забывать, что какая-то часть напряжения должна остаться для гасящего резистора, хотя бы вольта 2.

Получается, что на светодиоды остается только 10В, и количество светодиодов станет 10/2=5. При таком положении дел, чтобы получить ток 20мА, ограничительный резистор должен иметь номинал 2В/20мА=100Ом. Мощность резистора при этом составит P=U*I=2В*20мА=40мВт.

Такой расчет вполне справедлив, если прямое напряжение светодиодов в гирлянде, как было указано, 2В. Именно это значение часто принимается при расчетах, как некоторое среднее. Но на самом деле это напряжение зависит от типа светодиодов, от цвета свечения. Поэтому при расчетах гирлянд следует ориентироваться на тип светодиодов. Падения напряжения для светодиодов разных типов приведены в таблице, показанной на рисунке 8.

Рисунок 8. Падение напряжения на светодиодах разных цветов.

Таким образом, при напряжении источника питания 12В, за вычетом падения напряжения на токоограничивающем резисторе, всего можно подключить 10/3,7=2,7027 белых светодиодов. Но кусочек от светодиода не отрежешь, поэтому подключить возможно только два светодиода. Такой результат получается если из таблицы взять максимальное значение падения напряжения.

Если же в расчет подставить 3В, то совершенно очевидно, что подключить возможно три светодиода. При этом каждый раз придется кропотливо пересчитывать сопротивление ограничительного резистора. Если реальные светодиоды окажутся с падением напряжения 3,7В, а может выше, три светодиода могут и не зажечься. Так что лучше остановиться на двух.

Принципиально не важно, какого цвета будут светодиоды, просто при расчете придется учитывать разные падения напряжений в зависимости от цвета свечения светодиода. Главное, чтобы они были рассчитаны на один ток. Нельзя собрать последовательную гирлянду из светодиодов, часть которых с током 20мА, а другая часть из 10-ти миллиамперных.

Понятно, что при токе 20мА светодиоды с номинальным током 10мА попросту сгорят. Если же ограничить ток на уровне 10мА, то 20-ти миллиамперные засветятся недостаточно ярко, примерно как в выключателе со светодиодом: ночью видно, днем нет.

Чтобы облегчить себе жизнь, радиолюбители разрабатывают различные программы-калькуляторы, облегчающие всевозможные рутинные расчеты. Например, программы для расчета индуктивностей, фильтров различного типа, стабилизаторов тока. Есть такая программа и для расчета светодиодных гирлянд. Скриншот такой программы приведен на рисунке 9.

Рисунок 9. Скриншот программы «Расчет_сопротивления_резистора__Ledz_».

Программа работает без установки в системе, просто ее надо скачать и пользоваться. Все настолько просто и понятно, что никаких пояснений к скриншоту совсем не требуется. Естественно, что все светодиоды должны быть одного цвета и с одинаковым током.

Ограничительные резисторы это, конечно, хорошо. Но только тогда, когда известно, что вот эта гирлянда будет питаться от постоянного напряжения 12В, и ток через светодиоды не превысит расчетного значения. А как быть, если просто нет источника с напряжением 12В?

Такая ситуация может возникнуть, например, в грузовом автомобиле с напряжением бортовой сети 24В. Выйти из такой кризисной ситуации поможет стабилизатор тока, например, «SSC0018 - Регулируемый стабилизатор тока 20..600мА». Его внешний вид показан на рисунке 10. Такое устройство можно купить в интернет-магазинах. Цена вопроса 140…300 рублей: все зависит от фантазии и наглости продавца.

Рисунок 10. Регулируемый стабилизатор тока SSC0018

Технические характеристики стабилизатора показаны на рисунке 11.

Рисунок 11. Технические характеристики стабилизатора тока SSC0018

Изначально стабилизатор тока SSC0018 был разработан для применения в светодиодных светильниках, но может также применяться для зарядки малогабаритных аккумуляторов. Пользоваться устройством SSC0018 достаточно просто.

Сопротивление нагрузки на выходе стабилизатора тока может быть нулевым, попросту можно замкнуть накоротко выходные клеммы. Ведь стабилизаторы и источники тока не боятся коротких замыканий. При этом ток на выходе будет номинальным. Уж если установили 20мА, то столько и будет.

Из сказанного можно сделать вывод, что к выходу стабилизатора тока можно «напрямую» подключить миллиамперметр постоянного тока. Начинать такое подключение следует с самого большого предела измерений, ведь какой там отрегулирован ток никому не известно. Далее простым вращением подстроечного резистора установить требуемый ток. При этом, конечно, не забыть подключить стабилизатор тока SSC0018 к блоку питания. На рисунке 12 показана схема включения SSC0018 для питания светодиодов, соединенных параллельно.

Рисунок 12. Подключение для питания светодиодов, соединенных параллельно

Здесь все понятно из схемы. Для четырех светодиодов с током потребления 20мА на каждый на выходе стабилизатора надо выставить ток 80мА. При этом на входе стабилизатора SSC0018 потребуется напряжение чуть большее, чем падение напряжения на одном светодиоде, о чем было сказано выше. Конечно, подойдет и большее напряжение, но это приведет только к дополнительному нагреву микросхемы стабилизатора.

Замечание. Если для ограничения тока с помощью резистора напряжение источника питания должно превышать общее напряжение на светодиодах незначительно, всего вольта на два, то для нормальной работы стабилизатора тока SSC0018 это превышение должно быть несколько выше. Никак не меньше, чем 3…4В, иначе попросту не откроется регулирующий элемент стабилизатора.

На рисунке 13 показано подключение стабилизатора SSC0018 при использовании гирлянды из нескольких последовательно соединенных светодиодов.

Рисунок 13. Питание последовательной гирлянды через стабилизатор SSC0018

Рисунок взят из технической документации, поэтому попробуем рассчитать количество светодиодов в гирлянде и постоянное напряжение, потребное от блока питания.

Указанный на схеме ток, 350мА, позволяет сделать вывод, что гирлянда собрана из мощных белых светодиодов, ведь как было сказано чуть выше, основное назначение стабилизатора SSC0018 это источники освещения. Падение напряжения на белом светодиоде находится в пределах 3…3,7В. Для расчета следует взять максимальное значение 3,7В.

Максимальное входное напряжение стабилизатора SSC0018 составляет 50В. Вычитаем из этого значения 5В, необходимых для работы самого стабилизатора, остается 45В. Этим напряжением можно «засветить» 45/3,7=12,1621621… светодиодов. Очевидно, что это надо округлить до 12.

Количество светодиодов может быть и меньше. Тогда входное напряжение придется уменьшить (при этом выходной ток не изменится, так и останется 350мА как был отрегулирован), зачем на 3 светодиода, пусть даже мощных, подавать 50В? Такое издевательство может закончиться плачевно, ведь мощные светодиоды отнюдь недешевы. Какое потребуется напряжение для подключения трех мощных светодиодов желающие, а они всегда найдутся, могут посчитать сами.

Регулируемый стабилизатор тока SSC0018 устройство достаточно хорошее. Но весь вопрос в том, всегда ли оно нужно? Да и цена девайса несколько смущает. Каков же может быть выход из создавшегося положения? Все очень просто. Прекрасный стабилизатор тока получается из интегральных стабилизаторов напряжения, например, серии 78XX или LM317.

Для создания такого стабилизатора тока на базе стабилизатора напряжения потребуется всего 2 детали. Собственно сам стабилизатор и один единственный резистор, сопротивление и мощность которого поможет рассчитать программа StabDesign, скриншот которой показан на рисунке 14.

Рисунок14. Расчет стабилизатора тока с помощью программы StabDesign.

Особых пояснений программа не требует. В выпадающем меню Type выбирается тип стабилизатора, в строке Iн задается требуемый ток и нажимается кнопочка Calculate. В результате получается сопротивление резистора R1 и его мощность. На рисунке расчет проведен для тока 20мА. Это для случая, когда светодиоды соединены последовательно. Для параллельного соединения ток подсчитывается так же, как показано на рисунке 12.

Светодиодная гирлянда подключается вместо резистора Rн, символизирующего нагрузку стабилизатора тока. Возможно даже подключение всего одного светодиода. При этом катод подключается к общему проводу, а анод к резистору R1.

Входное напряжение рассмотренного стабилизатора тока находится в пределах 15…39В, поскольку применен стабилизатор 7812 с напряжением стабилизации 12В.

Казалось бы, на этом рассказ о светодиодах можно закончить. Но есть еще светодиодные ленты, о которых будет рассказано в следующей статье.

С токоограничивающим резистором для одного светодиода мы разобрались, теперь осталось выяснить, как включить несколько светодиодов. Предположим в нашем распоряжении источник напряжения в 12 В и три светодиода АЛ307И. У нас три варианта.

Первый – включить их каждый через свой токоограничивающий резистор, как мы делали на предыдущем практикуме:

В этом случае расчет токоограничивающих резисторов ничем не отличается от предыдущих расчетов (см. практикум « «) и будет одинаков для всех светодиодов.

Второй вариант – включить все светодиоды параллельно и нагрузить одним резистором, рассчитанным на тройной ток (светодиодов ведь три):

Вроде все верно, но есть одно «но», которое все испортит – разброс параметров даже однотипных светодиодов. В результате через светодиод с самым маленьким внутренним сопротивлением потечет повышенный ток и, в конце концов, он сгорит. Вот тут начнутся настоящие беды – через оставшиеся два потечет ток, больше расчетного минимум в 2 раза и сразу же выйдет из строя следующий, с меньшим «здоровьем». Что останется третьему, когда через него потечет ток, втрое превышающий расчетный? Итак, мы остались без светодиодов. Поэтому бросаем вновь изобретенный велосипед и возвращаемся к старому – ставим каждому светодиоду собственный токоограничивающий резистор:

Но у нас есть еще один вариант – последовательное соединение светодиодов и один токоограничивающий резистор:

В этом случае ток через все светодиоды будет одинаков, единственное условие – напряжение источника питания должно превышать сумму падений напряжений на каждом светодиоде. Как я уже сказал, наш источник питания выдает напряжение 12 В, а рабочее напряжение (U раб) того или иного типа светодиода мы снова смотрим в справочнике по светодиодам . Для АЛ307И Uраб =2.5 В, Iраб = 10 мА. Значит при токе через цепочку светодиодов 10 мА (их номинальный рабочий ток) на ней упадет 7.5 В. Все нормально, нашего источника хватит. Осталось подобрать токоограничивающий резистор. Снова обратимся к и рассчитаем номинал гасящего резистора:

Вполне очевидно, что 3 — число светодиодов в цепи. 0.75 – коэффициент надежности.

(12В-7.5В)/0.01А*0.75 = 600 Ом

Важно! Поскольку через все светодиоды течет одинаковый ток, соединять последовательно можно только прибры одного типа с одними теми же паспортными данными! Если в вашем распоряжении разные типы светодиодов, то резистор придется рассчитать и поставить для каждого прибора отдельно.

Ну и если вы предполагаете часто применять расчет гасящих резисторов, то удобнее будет воспользоваться

Или светоизлучающий диод (англ . LED Light-emitting diode) - полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении. Иными словами, светится, когда через него течет ток. Похоже на простую лампу накаливания, но устроен светодиод сложнее. В статье рассказывается об особенностях светодиода, о том как правильно подключать светодиод и о способе расчёта резистора для светодиода.

Особенности светодиода

Что-бы понимать, как правильно подключать светодиоды нужно разбираться в некоторых особенностях:

  • светодиод питается током . Напряжение, подаваемое на светодиод не имеет значения. Это может быть и 3В, и 1000В. Главное - выдержать необходимый ток. При нехватке тока, светодиод светится тусклее, чем может. При превышении тока светодиод светит ярче, но сильно греется. Светодиод, через который пропускают ток больше, чем он ожидает, перегреется и проработает совсем недолго. В данном случае всегда лучше «недолить».
  • падение напряжения . Важная характеристика светодиода - падение напряжения. Это значение показывает, на сколько вольт уменьшится напряжение при прохождении через светодиод при последовательном соединении. Например, если падение напряжения на светодиоде 3,4 вольта, то при напряжении питания 12 вольт, после первого светодиода остается 12-3,4= 8,6 вольт. На втором потеряется еще 3,4 вольта. Останется 8,6-3,4=5,2В. А после третьего останется 5,2-3,4=1,8 вольта. Это меньше, чем падение напряжения светодиода. Значит, больше светодиодов запитать мы не сможем.
  • температурный режим. Светодиод нагревается во время свечения. Чем мощнее светодиод, тем сильнее он нагревается. В случае с маломощными светодиодами в пластиковом корпусе, их нагревом можно пренебречь. Если вы имеете дело со сверхмощными яркими светодиодами, нужно думать об охлаждении.
  • полярность . При подключении светодиода нужно соблюдать полярность. Если перепутать плюс и минус, то ничего особенно страшного не случится, но светодиод не будет светить, и ток через него не пройдёт. У светодиода 2 вывода: анод и катод. Анод — положительный вывод. Он подключается к положительному полюсу источника питания. Катод - отрицательный. Его подключают к минусу (земле). Держа светодиод в руке выводы можно отличить по длине: анод делают длиннее катода. Внутри колбы светодиода выводы можно тоже отличить по размеру. Катод более массивен и по форме напоминает чашу.

Светодиод. Видна разница в длине катода и анода.

Светодиод. На крупном плане различим катод, напоминающий по форме чашу.

Необходимый ток и падение напряжения можно узнать из спецификации светодиода. Если у вас уже есть светодиод, но вы не знаете его характеристик, можно считать, что нужен ток 25мА, а падение напряжения считать равным 3В. Казалось бы, эти параметры идеально подходят для того, что-бы светодиод подключить напрямую к выводу Arduino. Но всё не так просто. Как отмечалось выше, светодиод токовый прибор. Если обычная лампочка сама себе выберет ток, то светодиод выбирает себе напряжение. То есть, если светодиод требует для себя 3В, а мы подадим на него 5В, то ток вырастет настолько, что светодиод сгорит. Это происходит потому, что он пытается удержать своё напряжение в 3V, а источник пытается выдать свои 5В. Начинается смертельная схватка. Если источник питания слабый, и светодиод сумеет просадить на нём напряжение до нужного — он уцелеет, а нет — источник питания выиграет битву, и светодиод сгорит. Для того, чтобы избежать проблем, нужно стабилизировать ток для светодиода. Простейший стабилизатор тока - резистор. Включаем последовательно со светодиодом резистор, резистор ослабляет источник питания, стабилизируя ток. При подключении больших и мощных светодиодов используют уже специальные тока, вместо резисторов. Резистор нужно уметь расчитывать.

Расчёт резистора для светодиода

Ничего сложного в расчёте резистора нет. Из формул нам понадобится разве что закон Ома : сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи.

Для расчёта сопротивления резистора для светодиода (R ) нужно знать: напряжение питания (Uпит ), падение напряжения на светодиоде (Uсв ) и необходимый светодиоду ток(I ).

Формула очень простая: R = (Uпит — Uсв) / I

Для простоты расчёта принимается ряд «стандартных» параметров:

Uпит=5 В, Uсв=3 В, I=25 мА=0,025 А

R = 5 — 3 / 0.025 = 80 Ом

Ближайшее стандартное сопротивление резистора - 100 Ом.

Однако, поскольку часто приходится иметь дело со светодиодами, точные параметры которых неизвестны, лично моя рекомендация: исключить падение напряжения из формулы. Так мы получим универсальную формулу для расчёта резистора для любого светодиода, при этом ограничим ток с запасом и не сильно потеряем в яркости. Однако, если вы собираете осветительный прибор и вам важно добиться максимальной светимости светодиода, используйте полную формулу, описанную выше. Итак, по моей упрощённой формуле расчёт будет таким:

R = 5 / 0.025 = 200 Ом

Ближайшее стандартное сопротивление резистора - 220 Ом. С помощью него и будем подключать. Резистор следует включать в цепь между положительным полюсом источника и анодом светодиода.

Теперь вы знаете, как правильно подключить один светодиод. Но что делать. когда вам нужно подключить несколько светодиодов к одному источнику питания?

Подключение нескольких светодиодов

При подключении одного светодиода ничего сложного нет. Мы только что обсудили это чуть выше. Но как правильно поступить, если одного светодиода недостаточно? Например, мы хотим подключить 15 светодиодов от источника питания 12В. Параметры светодиода для расчётов возьмём стандартные. Для дальнейших рассуждений придётся опять потормошить старика Ома и вспомнить, что при последовательном соединении напряжение складывается (в данном случае речь о падении напряжения на каждом светодиоде), а сила тока остаётся неизменной. При параллельном - наоборот. Теперь рассмотрим различные варианты подключения светодиодов.

Последовательное соединение

Наиболее простой способ. Все светодиоды подключаем гирляндой друг за другом. Катод первого к аноду второго и т.д. Необходимый светодиодам при параллельном соединении ток не зависит от количества светодиодов и составляет 25мА. Ещё потребуется учесть падение напряжения на каждом светодиоде. Пытливый читатель, дружащий с математикой, сейчас должен был запнуться. Падение напряжения рассчитывается как сумма падения напряжения для всех светодиодов. Да ещё и нужно оставить запас. Запас стоит оставлять из-за того, что светодиоды не идеальны. Падение напряжения сильно колеблется даже у светодиодов одного производителя и в одной партии. Падение зависит от температуры, да ещё и растёт по мере старения светодиода. У нас падение составит 15*3 = 45В. А источник всего на 12 вольт. Этот вариант отпадает. Последовательно мы можем позволить себе подключить только 12/4 = 4 светодиода. С запасом всего 3 светодиода в параллели. Теперь можно подключить перед цепочкой из трёх светодиодов токоограничительный резистор на 480 Ом (R = 12/0.025 = 480) и радоваться. Все три светодиода теперь получают ток в 25мА. Но неидеальность светодиодов означает, что нам может попасться экземпляр, который рассчитан на ток всего лишь в 20мА. Или чуть меньше. Или чуть больше. Неважно. Важно то, что наши рассчитанные 25mA окажутся избыточными. Такой светодиод начнёт греться и перегорит раньше других. Он перестанет пропускать через себя ток. Тогда все остальные светодиоды тоже погаснут. Последовательное подключение - недостаточно надёжная схема. Один перегоревший светодиод нарушает работу всей цепочки.

Достоинства : простая и дешёвая схема, низкое потребление тока.
Недостатки : необходимость в источнике питания с большим вольтажом, крайне низкая надёжность схемы.

Итак, последовательно нам удалось соединить только 3 светодиода. Но что если требуется подключить все 15?

Параллельное подключение светодиодов

Здесь у нас всё наоборот. Силу тока нужно умножить на количество светодиодов, а падение напряжения посчитать только 1 раз.
Сила тока: I = 0,025 * 15 =0,375 А
Нам потребуется источник питания, способный выдать максимальный ток в 0,375 А. Округлим до 0,35 (помните, что лучше «недолить»?). По напряжению тоже укладываемся: 12 — 2 = 10. Остаётся с большим запасом.

Пытливый читатель, запнувшийся парой абзацев ранее, может воскликнуть: «Погодите! Так зачем нам 12 вольт, если мы можем обойтись и пятью?». «Можем!» - ответим ему мы. Но не торопитесь с выводами, это ещё не конец .

Мы определились, что светодиоды будут подключены параллельно. Необходимо ограничить ток в цепи. Допустим, специального драйвера у нас нет. Возьмём резистор. Рассчитаем необходимое сопротивление по давно известной формуле: 12 В * 0,35 А = 4,2 Ом. Подключим его между источником питания и анодами светодиодов:

Вот, казалось бы, и всё. Но есть проблема:

ТАК ДЕЛАТЬ НЕЛЬЗЯ!!!

Как отмечалось выше, светодиоды не обязательно имеют те характеристики, которые заявлены производителем. Всегда есть разброс. И вот мы задали ток в 0,35 ампер и смотрим на светящуюся линейку светодиодов. Но всем им нужен разный ток. Одному, как мы и рассчитывали 25мА, другому - 20мА, третьему 21мА, а вот нашёлся совсем кривой светодиод, ему нужно всего 15мА. А мы пропускаем через него 25 - почти в 2 раза больше. Светодиод греется и быстро перегорает. В линейке стало на 1 светодиод меньше. Теперь для питания оставшихся светодиодов нам требуется 35мА. Пока всё не выглядит особенно плохо. Мы ограничили ток с запасом. Мы молодцы. Но не выдержал ещё один светодиод. Осталось 13. Теперь весь наш ток делится не на 15, а на 13 светодиодов. На каждый из них приходится по 26мА. Теперь абсолютно все светодиоды работают на повышенном токе. Очень скоро перегреется следующий. Самые стойкие получат уже по 29мА - 116% от номинала. Всего 2 перегоревших светодиода запустили цепную реакцию. Скоро вся линейка перегорит, а вы так и не поймёте почему (ну или поймёте, мы же только что всё разобрали). Собственно, избавиться от такого печального сценария просто. Нужно к каждому светодиоду поставить по собственному токоограничительному резистору. Для тока в 25мА и напряжения 12В нужен резистор на 480 Ом. Это не спасёт от проблемы «кривых» светодиодов, но их перегорание никак не повлияет на остальные.

Достоинства : высочайшая надёжность.
Недостатки : высокое потребление тока, высокая стоимость схемы.

Параллельное подключение светодиодов - идеальный вариант. Всегда стремитесь к тому, чтобы подключать светодиоды параллельно и ограничивать ток каждого светодиода по отдельности своим резистором. Если вы используете светодиодные драйверы (), то каждому светодиоду нужно подключать свой драйвер. Именно поэтому параллельные схемы с большим количеством светодиодов становятся слишком дорогими. В реальности приходится идти на компромисс и объединять светодиоды в цепочки.

Комбинированный способ подключения светодиодов

Итак. Подключим наши 15 светодиодов комбинированным способом. Вспомним расчёт для последовательного подключения. Там мы выяснили, что от 12 вольт можем безболезненно запитать 3 светодиода. На каждый из 3-х светодиодов потребуется резистор в 480 Ом. Это и будет наша цепочка - 3 светодиода и резистор. Теперь мы параллельно подключим 5 таких цепочек. При параллельном соединении напряжение питания остаётся неизменным, а сила тока для каждой цепочки умножается на количество цепочек. Получается, нужен источник на 12В и 5*0,025=0,125А. Как видим, такой способ подключения сильно экономит ток.

Достоинства : низкое потребление тока при большой плотности светодиодов, каждая цепочка не зависит от соседних, благодаря наличию собственного токоограничительного резистора.
Недостатки : внутри цепочки мы получаем те же проблемы, что и при обычном параллельном соединении. При наличии «кривых» светодиодов в цепочке, она выйдет из строя раньше других.

Комбинированное подключение светодиодов. 3 цепочки по 3 светодиода.

Выводы

При подключении светодиодов к источнику питания предпочтительно использовать параллельное соединение, снабжая каждый светодиод отдельным стабилизатором. При подключении большого количества светодиодов, для удешевления конструкции возможно комбинирование последовательного и параллельного способов соединения светодиодов для достижения оптимального результата.