Постоянная больцмана равна 8.31. Людвиг Больцман: Именные достижения

Для постоянной, связанной с энергией излучения чёрного тела, смотри Постоянная Стефана-Больцмана

Значение постоянной k

Размерность

1,380 6504(24) 10 −23

8,617 343(15) 10 −5

1,3807 10 −16

Смотри также Значения в различных единицах ниже.

Постоянная Больцмана (k или k B ) - физическая постоянная, определяющая связь между температурой вещества и энергией теплового движения частиц этого вещества. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта постоянная играет ключевую роль. Её экспериментальное значение в системе СИ равно

В таблице последние цифры в круглых скобках указывают стандартную погрешность значения постоянной. В принципе, постоянная Больцмана может быть получена из определения абсолютной температуры и других физических постоянных. Однако точное вычисление постоянной Больцмана с помощью основных принципов слишком сложно и невыполнимо при современном уровне знаний.

Экспериментально постоянную Больцмана можно определить с помощью закона теплового излучения Планка, описывающего распределение энергии в спектре равновесного излучения при определённой температуре излучающего тела, а также другими методами.

Существует связь между универсальной газовой постоянной и числом Авогадро , из которой следует значение постоянной Больцмана:

Размерность постоянной Больцмана такая же, как и у энтропии.

  • 1 История
  • 2 Уравнение состояния идеального газа
  • 3 Связь между температурой и энергией
    • 3.1 Соотношения газовой термодинамики
  • 4 Множитель Больцмана
  • 5 Роль в статистическом определении энтропии
  • 6 Роль в физике полупроводников: тепловое напряжение
  • 7 Применения в других областях
  • 8 Постоянная Больцмана в планковских единицах
  • 9 Постоянная Больцмана в теории бесконечной вложенности материи
  • 10 Значения в различных единицах
  • 11 Ссылки
  • 12 См. также

История

В 1877 г. Больцман впервые связал между собой энтропию и вероятность, однако достаточно точное значение постоянной k как коэффициента связи в формуле для энтропии появилось лишь в трудах М. Планка. При выводе закона излучения чёрного тела Планк в 1900–1901 гг. для постоянной Больцмана нашёл значение 1,346 10 −23 Дж/K, почти на 2,5% меньше принятого в настоящее время.

До 1900 г. соотношения, которые сейчас записываются с постоянной Больцмана, писались с помощью газовой постоянной R , а вместо средней энергии на одну молекулу использовалась общая энергия вещества. Лаконичная формула вида S = k log W на бюсте Больцмана стала таковой благодаря Планку. В своей нобелевской лекции в 1920 г. Планк писал:

Эта константа часто называется постоянной Больцмана, хотя, насколько я знаю, сам Больцман никогда не вводил её - странное состояние дел, при том, что в высказываниях Больцмана не было речи о точном измерении этой константы.

Такая ситуация может быть объяснена проведением в то время научных дебатов по выяснению сущности атомного строения вещества. Во второй половине 19 века существовали значительные разногласия в отношении того, являются ли атомы и молекулы реальными, либо они лишь удобный способ описания явлений. Не было единства и в том, являются ли "химические молекулы", различаемые по их атомной массе, теми же самыми молекулами, что и в кинетической теории. Далее в нобелевской лекции Планка можно найти следующее:

«Ничто не может лучше продемонстрировать положительную и ускоряющуюся скорость прогресса, чем искусство эксперимента за последние двадцать лет, когда было открыто сразу множество методов измерения массы молекул практически с той же точностью, что и измерение массы какой-нибудь планеты».

Уравнение состояния идеального газа

Для идеального газа справедлив объединённый газовый закон, связывающий давление P , объём V , количество вещества n в молях, газовую постоянную R и абсолютную температуру T :

В данном равенстве можно сделать замену . Тогда газовый закон будет выражаться через постоянную Больцмана и количество молекул N в объёме газа V :

Связь между температурой и энергией

В однородном идеальном газе, находящемся при абсолютной температуре T , энергия, приходящаяся на каждую поступательную степень свободы, равна, как следует из распределения Максвелла, kT / 2 . При комнатной температуре (≈ 300 K) эта энергия составляет Дж, или 0,013 эВ.

Соотношения газовой термодинамики

В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия 3kT / 2 . Это хорошо согласуется с экспериментальными данными. Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню из атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона.

Кинетическая теория даёт формулу для среднего давления P идеального газа:

Учитывая, что средняя кинетическая энергия прямолинейного движения равна:

находим уравнение состояния идеального газа:

Это соотношение неплохо выполняется и для молекулярных газов; однако зависимость теплоёмкости изменяется, так как молекулы могут иметь дополнительные внутренние степени свободы по отношению к тем степеням свободы, которые связаны с движением молекул в пространстве. Например, двухатомный газ имеет уже приблизительно пять степеней свободы.

Множитель Больцмана

В общем случае система в равновесии с тепловым резервуаром при температуре T имеет вероятность p занять состояние с энергией E , что может быть записано с помощью соответствующего экспоненциального множителя Больцмана:

В данном выражении фигурирует величина kT с размерностью энергии.

Вычисление вероятности используется не только для расчётов в кинетической теории идеальных газов, но и в других областях, например в химической кинетике в уравнении Аррениуса.

Роль в статистическом определении энтропии

Основная статья : Термодинамическая энтропия

Энтропия S изолированной термодинамической системы в термодинамическом равновесии определяется через натуральный логарифм от числа различных микросостояний W , соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией E ):

Коэффициент пропорциональности k является постоянной Больцмана. Это выражение, определяющее связь между микроскопическими и макроскопическими состояниями (через W и энтропию S соответственно), выражает центральную идею статистической механики и является главным открытием Больцмана.

В классической термодинамике используется выражение Клаузиуса для энтропии:

Таким образом, появление постоянной Больцманаk можно рассматривать как следствие связи между термодинамическим и статистическим определениями энтропии.

Энтропию можно выразить в единицах k , что даёт следующее:

В таких единицах энтропия точно соответствует информационной энтропии.

Характерная энергия kT равна количеству теплоты, необходимому для увеличения энтропии S " на один нат.

Роль в физике полупроводников: тепловое напряжение

В отличие от других веществ, в полупроводниках существует сильная зависимость электропроводности от температуры:

где множитель σ 0 достаточно слабо зависит от температуры по сравнению с экспонентой, E A – энергия активации проводимости. Плотность электронов проводимости также экспоненциально зависит от температуры. Для тока через полупроводниковый p-n-переход вместо энергии активации рассматривают характерную энергию данного p-n перехода при температуре T как характерную энергию электрона в электрическом поле:

где q – , а V T есть тепловое напряжение, зависящее от температуры.

Данное соотношение является основой для выражения постоянной Больцмана в единицах эВ∙К −1 . При комнатной температуре (≈ 300 K) значение теплового напряжения порядка 25,85 милливольт ≈ 26 мВ.

В классической теории часто используют формулу, согласно которой эффективная скорость носителей заряда в веществе равна произведению подвижности носителей μ на напряженность электрического поля. В другой формуле плотность потока носителей связывается с коэффициентом диффузии D и с градиентом концентрации носителей n :

Согласно соотношению Эйнштейна-Смолуховского, коэффициент диффузии связан с подвижностью:

Постоянная Больцмана k входит также в закон Видемана-Франца, по которому отношение коэффициента теплопроводности к коэффициенту электропроводности в металлах пропорционально температуре и квадрату отношения постоянной Больцмана к электрическому заряду.

Применения в других областях

Для разграничения температурных областей, в которых поведение вещества описывается квантовыми или классическими методами, служит температура Дебая:

где – , есть предельная частота упругих колебаний кристаллической решётки, u – скорость звука в твёрдом теле, n – концентрация атомов.

Постоя́нная Бо́льцмана (k или k_{\rm B}) - физическая постоянная , определяющая связь между температурой и энергией . Названа в честь австрийского физика Людвига Больцмана , сделавшего большой вклад в статистическую физику , в которой эта постоянная играет ключевую роль. Её экспериментальное значение в Международной системе единиц (СИ) равно:

k=1{,}380\,648\,52(79)\times 10^{-23} Дж / .

Числа в круглых скобках указывают стандартную погрешность в последних цифрах значения величины. В естественной системе единиц Планка естественная единица температуры задаётся так, что постоянная Больцмана равна единице.

Связь между температурой и энергией

В однородном идеальном газе , находящемся при абсолютной температуре T, энергия, приходящаяся на каждую поступательную степень свободы , равна, как следует из распределения Максвелла , kT/2. При комнатной температуре (300 ) эта энергия составляет 2{,}07\times 10^{-21} Дж , или 0,013 эВ . В одноатомном идеальном газе каждый атом обладает тремя степенями свободы, соответствующими трём пространственным осям, что означает, что на каждый атом приходится энергия в \frac 3 2 kT.

Зная тепловую энергию, можно вычислить среднеквадратичную скорость атомов, которая обратно пропорциональна квадратному корню атомной массы. Среднеквадратичная скорость при комнатной температуре изменяется от 1370 м/с для гелия до 240 м/с для ксенона . В случае молекулярного газа ситуация усложняется, например, двухатомный газ имеет пять степеней свободы (при низких температурах, когда не возбуждены колебания атомов в молекуле).

Определение энтропии

Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояний Z, соответствующих данному макроскопическому состоянию (например, состоянию с заданной полной энергией).

S=k\ln Z.

Коэффициент пропорциональности k и есть постоянная Больцмана. Это выражение, определяющее связь между микроскопическими (Z) и макроскопическими состояниями (S), выражает центральную идею статистической механики.

Предполагаемая фиксация значения

XXIV Генеральная конференция по мерам и весам , состоявшаяся 17-21 октября 2011 года, приняла резолюцию , в которой, в частности, предложено будущую ревизию Международной системы единиц произвести так, чтобы зафиксировать значение постоянной Больцмана, после чего она будет считаться определённой точно . В результате будет выполняться точное равенство k =1,380 6X·10 −23 Дж/К . Такая предполагаемая фиксация связана со стремлением переопределить единицу термодинамической температуры кельвин , связав его величину со значением постоянной Больцмана.

См. также

Напишите отзыв о статье "Постоянная Больцмана"

Примечания

Отрывок, характеризующий Постоянная Больцмана

– Но что же это значит? – задумчиво сказала Наташа.
– Ах, я не знаю, как все это необычайно! – сказала Соня, хватаясь за голову.
Через несколько минут князь Андрей позвонил, и Наташа вошла к нему; а Соня, испытывая редко испытанное ею волнение и умиление, осталась у окна, обдумывая всю необычайность случившегося.
В этот день был случай отправить письма в армию, и графиня писала письмо сыну.
– Соня, – сказала графиня, поднимая голову от письма, когда племянница проходила мимо нее. – Соня, ты не напишешь Николеньке? – сказала графиня тихим, дрогнувшим голосом, и во взгляде ее усталых, смотревших через очки глаз Соня прочла все, что разумела графиня этими словами. В этом взгляде выражались и мольба, и страх отказа, и стыд за то, что надо было просить, и готовность на непримиримую ненависть в случае отказа.
Соня подошла к графине и, став на колени, поцеловала ее руку.
– Я напишу, maman, – сказала она.
Соня была размягчена, взволнована и умилена всем тем, что происходило в этот день, в особенности тем таинственным совершением гаданья, которое она сейчас видела. Теперь, когда она знала, что по случаю возобновления отношений Наташи с князем Андреем Николай не мог жениться на княжне Марье, она с радостью почувствовала возвращение того настроения самопожертвования, в котором она любила и привыкла жить. И со слезами на глазах и с радостью сознания совершения великодушного поступка она, несколько раз прерываясь от слез, которые отуманивали ее бархатные черные глаза, написала то трогательное письмо, получение которого так поразило Николая.

На гауптвахте, куда был отведен Пьер, офицер и солдаты, взявшие его, обращались с ним враждебно, но вместе с тем и уважительно. Еще чувствовалось в их отношении к нему и сомнение о том, кто он такой (не очень ли важный человек), и враждебность вследствие еще свежей их личной борьбы с ним.
Но когда, в утро другого дня, пришла смена, то Пьер почувствовал, что для нового караула – для офицеров и солдат – он уже не имел того смысла, который имел для тех, которые его взяли. И действительно, в этом большом, толстом человеке в мужицком кафтане караульные другого дня уже не видели того живого человека, который так отчаянно дрался с мародером и с конвойными солдатами и сказал торжественную фразу о спасении ребенка, а видели только семнадцатого из содержащихся зачем то, по приказанию высшего начальства, взятых русских. Ежели и было что нибудь особенное в Пьере, то только его неробкий, сосредоточенно задумчивый вид и французский язык, на котором он, удивительно для французов, хорошо изъяснялся. Несмотря на то, в тот же день Пьера соединили с другими взятыми подозрительными, так как отдельная комната, которую он занимал, понадобилась офицеру.
Все русские, содержавшиеся с Пьером, были люди самого низкого звания. И все они, узнав в Пьере барина, чуждались его, тем более что он говорил по французски. Пьер с грустью слышал над собою насмешки.
На другой день вечером Пьер узнал, что все эти содержащиеся (и, вероятно, он в том же числе) должны были быть судимы за поджигательство. На третий день Пьера водили с другими в какой то дом, где сидели французский генерал с белыми усами, два полковника и другие французы с шарфами на руках. Пьеру, наравне с другими, делали с той, мнимо превышающею человеческие слабости, точностью и определительностью, с которой обыкновенно обращаются с подсудимыми, вопросы о том, кто он? где он был? с какою целью? и т. п.
Вопросы эти, оставляя в стороне сущность жизненного дела и исключая возможность раскрытия этой сущности, как и все вопросы, делаемые на судах, имели целью только подставление того желобка, по которому судящие желали, чтобы потекли ответы подсудимого и привели его к желаемой цели, то есть к обвинению. Как только он начинал говорить что нибудь такое, что не удовлетворяло цели обвинения, так принимали желобок, и вода могла течь куда ей угодно. Кроме того, Пьер испытал то же, что во всех судах испытывает подсудимый: недоумение, для чего делали ему все эти вопросы. Ему чувствовалось, что только из снисходительности или как бы из учтивости употреблялась эта уловка подставляемого желобка. Он знал, что находился во власти этих людей, что только власть привела его сюда, что только власть давала им право требовать ответы на вопросы, что единственная цель этого собрания состояла в том, чтоб обвинить его. И поэтому, так как была власть и было желание обвинить, то не нужно было и уловки вопросов и суда. Очевидно было, что все ответы должны были привести к виновности. На вопрос, что он делал, когда его взяли, Пьер отвечал с некоторою трагичностью, что он нес к родителям ребенка, qu"il avait sauve des flammes [которого он спас из пламени]. – Для чего он дрался с мародером? Пьер отвечал, что он защищал женщину, что защита оскорбляемой женщины есть обязанность каждого человека, что… Его остановили: это не шло к делу. Для чего он был на дворе загоревшегося дома, на котором его видели свидетели? Он отвечал, что шел посмотреть, что делалось в Москве. Его опять остановили: у него не спрашивали, куда он шел, а для чего он находился подле пожара? Кто он? повторили ему первый вопрос, на который он сказал, что не хочет отвечать. Опять он отвечал, что не может сказать этого.

Физический смысл: Газовая постоянна я численно равна работе расширения одного моля идеального газа в изобарном процессе при увеличении температуры на 1 К

В системе СГС Газовая постоянная равна:

Удельная Газовая постоянная равна:

В формуле мы использовали:

Универсальная газовая постоянная (постоянная Менделеева)

Постоянная Больцмана

Число Авогадро

Закон Авогадро - В равных объемах различных газов при постоянных температуре и давлении содержится одинаковое число молекул.

Из Закона Авогадро выводится 2 следствия:

Следствие 1 : Один моль любого газа при одинаковых условиях занимает одинаковый объем

В частности, при нормальных условиях (T=0 °C (273К) и p=101,3 кПа) объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа Vm. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона

1) Закон Шарля:

2) Закон Гей-Люссака:

3) Закон Боля-Мариотта:

Следствие 2 : Отношение масс одинаковых объемов двух газов есть величина постоянная для данных газов

Эта постоянная величина называется относительной плотностью газов и обозначается D. Так как молярные объемы всех газов одинаковы (1-е следствие закона Авогадро), то отношение молярных масс любой пары газов также равна этой постоянной:

В Формуле мы использовали:

Относительная плотность газа

Молярные массы

Давление

Молярный объем

Универсальная газовая постоянная

Абсолютная температу

Закон Бойля Мариотта - При постоянной температуре и массе идеального газа произведение его давления и объёма постоянно.

Это означает, что с ростом давления на газ его объем уменьшается, и наоборот. Для неизменного количества газа закон Бойля - Мариотта можно также интерпретировать следующим образом: при неизменной температуре произведение давления на объем является величиной постоянной. Закон Бойля - Мариотта выполняется строго для идеального газа и является следствием уравнения Менделеева Клапейрона. Для реальных газов закон Бойля - Мариотта выполняется приближенно. Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких температурах.

Чтобы было легче понять Закон Бойля Мариотта представим, что вы сдавливаете надутый воздушный шарик. Поскольку свободного пространства между молекулами воздуха достаточно, вы без особого труда, приложив некоторую силу и проделав определенную работу, сожмете шарик, уменьшив объем газа внутри него. Это одно из основных отличий газа от жидкости. В шарике с жидкой водой, например, молекулы упакованы плотно, как если бы шарик был заполнен микроскопическими дробинками. Поэтому вода не поддается, в отличие от воздуха, упругому сжатию.

Так же есть:

Закон Шарля:

Закон Гей Люссака:

В законе мы использовали:

Давление в 1 сосуде

Объем 1 сосуда

Давление во 2 сосуде

Объем 2 сосуда

Закон Гей Люссака - при постоянном давлении объём постоянной массы газа пропорционален абсолютной температуре

Объем V данной массы газа при постоянном давлении газа прямо пропорционален изменению температуры

Закон Гей-Люссака справедлив только для идеальных газов, реальные газы подчиняются ему при температурах и давлениях, далеких от критических значений. Является частным случаем уравнения Клайперона.

Так же есть:

Уравнение Менделеева Клапейрона:

Закон Шарля:

Закон Бойля Мариотта:

В законе мы использовали:

Объем в 1 сосуде

Температура в 1 сосуде

Объем во 1 сосуде

Температура в 1 сосуде

Начальный объем газа

Объем газа при температуре T

Коэффициент теплового расширения газов

Разность начальной и конечной температур

Закон Генри - закон, по которому при постоянной температуре растворимость газа в данной жидкости прямо пропорциональна давлению этого газа над раствором. Закон пригоден лишь для идеальных растворов и невысоких давлений.

Закон Генри описывает процесс растворения газа в жидкости. Что представляет собой жидкость, в которой растворен газ, мы знаем на примере газированных напитков - безалкогольных, слабоалкогольных, а по большим праздникам - шампанского. Во всех этих напитках растворена двуокись углерода (химическая формула CO2) - безвредный газ, используемый в пищевой промышленности по причине его хорошей растворимости в воде, а пенятся после открытия бутылки или банки все эти напитки по той причине, что растворенный газ начинает выделяться из жидкости в атмосферу, поскольку после открытия герметичного сосуда давление внутри падает.

Собственно, закон Генри констатирует достаточно простой факт: чем выше давление газа над поверхностью жидкости, тем труднее растворенному в ней газу высвободиться. И это совершенно логично с точки зрения молекулярно-кинетической теории, поскольку молекуле газа, чтобы вырваться на свободу с поверхности жидкости, нужно преодолеть энергию соударений с молекулами газа над поверхностью, а чем выше давление и, как следствие, число молекул в приграничной области, тем сложнее растворенной молекуле преодолеть этот барьер.

В формуле мы использовали:

Концентрация газа в растворе в долях моля

Коэффициент Генри

Парциальное давление газа над раствором

Закон излучения Кирхгофа - отношение испускательной и поглощательной способностей не зависит от природы тела, оно является для всех тел одной и той же.

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него (Поглощательная способность тела) . Поэтому функция совпадает с испускательной способностью

В формуле мы использовали:

Испускательная способность тела

Поглощательная способность тела

Функция Кирхгофа

Закон Стефана-Больцмана - Энергетическая светимость абсолютно черного тела пропорциональна четвертой степени абсолютной температуры.

Из формулы видно, что при повышении температуры светимость тела не просто возрастает - она возрастает в значительно большей степени. Увеличьте температуру вдвое, и светимость возрастет в 16 раз!

Нагретые тела излучают энергию в виде электромагнитных волн различной длины. Когда мы говорим, что тело «раскалено докрасна», это значит, что его температура достаточно высока, чтобы тепловое излучение происходило в видимой, световой части спектра. На атомарном уровне излучение становится следствием испускания фотонов возбужденными атомами.

Чтобы понять, как действует этот закон, представьте себе атом, излучающий свет в недрах Солнца. Свет тут же поглощается другим атомом, излучается им повторно - и таким образом передается по цепочке от атома к атому, благодаря чему вся система находится в состоянии энергетического равновесия . В равновесном состоянии свет строго определенной частоты поглощается одним атомом в одном месте одновременно с испусканием света той же частоты другим атомом в другом месте. В результате интенсивность света каждой длины волны спектра остается неизменной.

Температура внутри Солнца падает по мере удаления от его центра. Поэтому, по мере движения по направлению к поверхности, спектр светового излучения оказывается соответствующим более высоким температурам, чем температура окружающий среды. В результате, при повторном излучении, согласно закону Стефана-Больцмана , оно будет происходить на более низких энергиях и частотах, но при этом, в силу закона сохранения энергии, будет излучаться большее число фотонов. Таким образом, к моменту достижения им поверхности спектральное распределение будет соответствовать температуре поверхности Солнца (около 5 800 К), а не температуре в центре Солнца (около 15 000 000 К).

Энергия, поступившая к поверхности Солнца (или к поверхности любого горячего объекта), покидает его в виде излучения. Закон Стефана-Больцмана как раз и говорит нам, какова излученная энергия.

В вышеприведенной формулировке закон Стефана-Больцмана распространяется только на абсолютно черное тело, поглощающее всё попадающее на его поверхность излучение. Реальные физические тела поглощают лишь часть лучевой энергии, а оставшаяся часть ими отражается, однако закономерность, согласно которой удельная мощность излучения с их поверхности пропорциональна Т в 4, как правило, сохраняется и в этом случае, однако постоянную Больцмана в этом случае приходится заменять на другой коэффициент, который будет отражать свойства реального физического тела. Такие константы обычно определяются экспериментальным путем.

В формуле мы использовали:

Энергетическая светимость тела

Постоянная Стефана-Больцмана

Абсолютная температура

Закон Шарля - давление данной массы идеального газа при постоянном объеме прямо пропорционально абсолютной температуре

Чтобы легче было понять закон Шарля , представьте себе воздух внутри воздушного шарика. При постоянной температуре воздух в шарике будет расширяться или сжиматься, пока давление, производимое его молекулами, не достигнет 101 325 паскалей и не сравняется с атмосферным давлением. Иными словами, пока на каждый удар молекулы воздуха извне, направленный внутрь шарика, не будет приходиться аналогичный удар молекулы воздуха, направленный изнутри шарика вовне.

Если понизить температуру воздуха в шарике (например, положив его в большой холодильник), молекулы внутри шарика станут двигаться медленнее, менее энергично ударяя изнутри о стенки шарика. Молекулы наружного воздуха тогда будут сильнее давить на шарик, сжимая его, в результате объем газа внутри шарика будет уменьшаться. Это будет происходить до тех пор, пока увеличение плотности газа не компенсирует понизившуюся температуру, и тогда опять установится равновесие.

Так же есть:

Уравнение Менделеева Клапейрона:

Закон Гей Люссака:

Закон Бойля Мариотта:

В законе мы использовали:

Давление в 1 сосуде

Температура в 1 сосуде

Давление в 2 сосуде

Температура в 2 сосуде

Первый закон термодинамики - Изменение внутренней энергии ΔU не изолированной термодинамической системы равно разности между количеством теплоты Q, переданной системе, и работой A внешних сил

Вместо работы А, совершаемой внешними силами над термодинамической системой, часто удобнее бывает рассматривать работу A’, совершаемую термодинамической системой над внешними телами. Так как эти работы равны по абсолютному значению, но противоположны по знаку:

Тогда после такого преобразования первый закон термодинамики будет иметь вид:

Первый закон термодинамики - В не изолированной термодинамической системе изменение внутренней энергии равно разности между полученным количеством теплоты Q и работой A’, совершаемой данной системой

Говоря простым языком первый закон термодинамики говорит о энергии, которая не может сама создаваться и исчезать в никуда, она передается от одной системы к другой и превращается из одной формы в другую (механическая в тепловую).

Важным следствием первого закона термодинамики является то, что невозможности создать машину (двигатель), которая способна совершать полезную работу без потребления энергии извне. Такая гипотетическая машина получила название вечного двигателя первого рода.

Больцман Людвиг (1844-1906) - великий австрийский физик, один из основоположников молекулярно-кинетической теории. В трудах Больцмана молекулярно-кинетическая теория впервые предстала как логически стройная, последовательная физическая теория. Больцман дал статистическое истолкование второго закона термодинамики. Им много сделано для развития и популяризации теории электромагнитного поля Максвелла. Борец по натуре, Больцман страстно отстаивал необходимость молекулярного истолкования тепловых явлений и принял на себя основную тяжесть борьбы с учеными, отрицавшими существование молекул.

В уравнение (4.5.3) входит отношение универсальной газовой постоянной R к постоянной Авогадро N A . Это отношение одинаково для всех веществ. Оно называется постоянной Больцмана, в честь Л. Больцмана, одного из основателей молекулярно-кинетической теории.

Постоянная Больцмана равна:

(4.5.4)

Уравнение (4.5.3) с учетом постоянной Больцмана записывается так:

(4.5.5)

Физический смысл постоянной Больцмана

Исторически температура была впервые введена как термодинамическая величина, и для нее была установлена единица измерения - градус (см. § 3.2). После установления связи температуры со средней кинетической энергией молекул стало очевидным, что температуру можно определять как среднюю кинетическую энергию молекул и выражать ее в джоулях или эргах, т. е. вместо величины Т ввести величину Т* так, чтобы

Определенная таким образом температура связана с температурой, выражаемой в градусах, следующим образом:

Поэтому постоянную Больцмана можно рассматривать как величину, связывающую температуру, выражаемую в энергетических единицах, с температурой, выраженной в градусах.

Зависимость давления газа от концентрации его молекул и температуры

Выразив Е из соотношения (4.5.5) и подставив в формулу (4.4.10), получим выражение, показывающее зависимость давления газа от концентрации молекул и температуры:

(4.5.6)

Из формулы (4.5.6) вытекает, что при одинаковых давлениях и температурах концентрация молекул у всех газов одна и та же.

Отсюда следует закон Авогадро: в равных объемах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.

Средняя кинетическая энергия поступательного движения молекул прямо пропорциональна абсолютной температуре. Коэффициент пропорциональности - постоянную Больцмана k = 10 -23 Дж/К - надо запомнить.

§ 4.6. Распределение максвелла

В большом числе случаев знание одних средних значений физических величин недостаточно. Например, знание среднего роста людей не позволяет планировать выпуск одежды различных размеров. Надо знать приблизительное число людей, рост которых лежит в определенном интервале. Точно так же важно знать числа молекул, имеющих скорости, отличные от среднего значения. Максвелл первым нашел, как эти числа можно определять.

Вероятность случайного события

В §4.1 мы уже упоминали, что для описания поведения большой совокупности молекул Дж. Максвелл ввел понятие вероятности.

Как неоднократно подчеркивалось, в принципе невозможно проследить за изменением скорости (или импульса) одной молекулы на протяжении большого интервала времени. Нельзя также точно определить скорости всех молекул газа в данный момент времени. Из макроскопических условий, в которых находится газ (определенный объем и температура), не вытекают с необходимостью определенные значения скоростей молекул. Скорость молекулы можно рассматривать как случайную величину, которая в данных макроскопических условиях может принимать различные значения, подобно тому как при бросании игральной кости может выпасть любое число очков от 1 до 6 (число граней кости равно шести). Предсказать, какое число очков выпадет при данном бросании кости, нельзя. Но вероятность того, что выпадет, скажем, пять очков, поддается определению.

Что же такое вероятность наступления случайного события? Пусть произведено очень большое число N испытаний (N - число бросаний кости). При этом в N " случаях имел место благоприятный исход испытаний (т. е. выпадение пятерки). Тогда вероятность данного события равна отношению числа случаев с благоприятным исходом к полному числу испытаний при условии, что это число сколько угодно велико:

(4.6.1)

Для симметричной кости вероятность любого выбранного числа очков от 1 до 6 равна .

Мы видим, что на фоне множества случайных событий обнаруживается определенная количественная закономерность, появляется число. Это число - вероятность - позволяет вычислять средние значения. Так, если произвести 300 бросаний кости, то среднее число выпаданий пятерки, как это следует из формулы (4.6.1), будет равно: 300 ·= 50, причем совершенно безразлично, бросать 300 раз одну и ту же кость или одновременно 300 одинаковых костей.

Несомненно, что поведение молекул газа в сосуде гораздо сложнее движения брошенной игральной кости. Но и здесь можно надеяться обнаружить определенные количественные закономерности, позволяющие вычислять статистические средние, если только ставить задачу так же, как в теории игр, а не как в классической механике. Нужно отказаться от неразрешимой задачи определения точного значения скорости молекулы в данный момент и попытаться найти вероятность того, что скорость имеет определенное значение.

(k или k B) – физическая постоянная, определяющая связь между температурой и энергией. Названа в честь австрийского физика Людвига Больцмана, сделавшего большой вклад в статистическую физику, в которой эта стала занимает ключевую позицию. Ее экспериментальное значение в системе СИ равен

Числа в круглых скобках указывают стандартную погрешность в последних цифрах значения величины. В принципе, постоянную Больцмана можно получить из определения абсолютной температуры и других физических констант (для этого нужно уметь рассчитать из первых принципов температуру тройной точки воды). Но определение постоянной Больцмана с помощью основных принципов слишком сложное и нереальное при современном развитии знаний в этой области.
Постоянная Больцмана – излишняя физическая постоянная, если измерять температуру в единицах энергии, что очень часто делается в физике. Она, собственно, связью между хорошо определенной величиной – энергией и градусом, значение которого сложилось исторически.
Определение энтропии
Энтропия термодинамической системы определяется как натуральный логарифм от числа различных микросостояния Z, соответствующих данному макроскопическому состоянию (например, состояния с заданной полной энергией).

Коэффициент пропорциональности k и является постоянной Больцмана. Это выражение, определяющее связь между микроскопическими (Z) и макроскопическими (S) характеристиками, выражает главную (центральную) идею статистической механики.