Потери давления в воздуховоде калькулятор. Пример подбора вентиляторов для системы вентиляции

Целью аэродинамического расчета является определение потерь давления (сопротивления) движению воздуха во всех элементах системы вентиляции - воздуховодах, их фасонных элементах, решетках, диффузорах, воздухонагревателях и других. Зная общую величину этих потерь, можно подобрать вентилятор, способный обеспечить необходимый расход воздуха. Различают прямую и обратную задачи аэродинамического расчета. Прямая задача решается при проектировании вновь создаваемых систем вентиляции, состоит в определении площади сечения всех участков системы при заданном расходе через них. Обратная задача – определение расхода воздуха при заданной площади сечения эксплуатируемых или реконструируемых систем вентиляции. В таких случаях для достижения требуемого расхода достаточно изменения частоты вращения вентилятора или его замены на другой типоразмер.

Аэродинамический расчет начинают после определения кратности воздухообмена помещений и принятия решения по трассировке (схеме прокладки) воздуховодов и каналов. Кратность воздухообмена является количественной характеристикой работы системы вентиляции, показывает, сколько раз в течение 1-го часа объем воздуха помещения полностью заменится новым. Кратность зависит от характеристик помещения, его назначения и может отличаться в несколько раз. Перед началом аэродинамического расчета создается схема системы в аксонометрической проекции и масштабе М 1:100. На схеме выделяют основные элементы системы: воздуховоды, их фасонные части, фильтры, шумоглушители, клапана, воздухонагреватели, вентиляторы, решетки и другие. По этой схеме, строительным планам помещений определяют длину отдельных ветвей. Схему делят на расчетные участки, которые имеют постоянный расход воздуха. Границами расчетных участков являются фасонные элементы – отводы, тройники и прочие. Определяют расход на каждом участке, наносят его, длину, номер участка на схему. Далее выбирают магистраль – наиболее длинную цепь последовательно расположенных участков, считая от начала системы до самого удаленного ответвления. Если в системе несколько магистралей одинаковой длины, то главной выбирают с большим расходом. Принимается форма поперечного сечения воздуховодов – круглая, прямоугольная или квадратная. Потери давления на участках зависят от скорости воздуха и состоят из: потерь на трение и в местных сопротивлениях. Общие потери давления системы вентиляции равны потерям магистрали и состоят из суммы потерь всех ее расчетных участков. Выбирают направление расчета – от самого дальнего участка до вентилятора.

По площади F определяют диаметр D (для круглой формы) или высоту A и ширину B (для прямоугольной) воздуховода, м. Полученные величины округляют до ближайшего большего стандартного размера, т.е. D ст , А ст и В ст (справочная величина).

Пересчитывают фактические площадь сечения F факт и скорость v факт .

Для прямоугольного воздуховода определяют т.н. эквивалентный диаметр DL = (2A ст * B ст ) / (A ст + B ст ), м.

Определяют величину критерия подобия Рейнольдса Re = 64100* D ст * v факт. Для прямоугольной формы D L = D ст .

Коэффициент трения λ тр = 0,3164 ⁄ Re-0,25 при Re≤60000, λ тр = 0,1266 ⁄ Re-0,167 при Re>60000.

Коэффициент местного сопротивления λм зависит от их типа, количества и выбирается из справочников.

Когда известны параметры воздуховодов (их длина, сечение, коэффициент трения воздуха о поверхность), можно рассчитать потери давления в системе при проектируемом расходе воздуха.

Общие потери давления (в кг/кв.м.) рассчитываются по формуле:

P = R*l + z,

где R - потери давления на трение в расчете на 1 погонный метр воздуховода, l - длина воздуховода в метрах, z - потери давления на местные сопротивления (при переменном сечении).

1. Потери на трение:

В круглом воздуховоде потери давления на трение P тр считаются так:

Pтр = (x*l/d) * (v*v*y)/2g,

где x - коэффициент сопротивления трения, l - длина воздуховода в метрах, d - диаметр воздуховода в метрах, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2).

  • Замечание: Если воздуховод имеет не круглое, а прямоугольное сечение, в формулу надо подставлять эквивалентный диаметр, который для воздуховода со сторонами А и В равен: dэкв = 2АВ/(А + В)

2. Потери на местные сопротивления:

Потери давления на местные сопротивления считаются по формуле:

z = Q* (v*v*y)/2g,

где Q - сумма коэффициентов местных сопротивлений на участке воздуховода, для которого производят расчет, v - скорость течения воздуха в м/с, y - плотность воздуха в кг/куб.м., g - ускорение свободного падения (9,8 м/с2). Значения Q содержатся в табличном виде.

Метод допустимых скоростей

При расчете сети воздуховодов по методу допустимых скоростей за исходные данные принимают оптимальную скорость воздуха (см. таблицу). Затем считают нужное сечение воздуховода и потери давления в нем.

Порядок действий при аэродинамическом расчете воздуховодов по методу допустимых скоростей:

  • Начертить схему воздухораспределительной системы. Для каждого участка воздуховода указать длину и количество воздуха, проходящего за 1 час.
  • Расчет начинаем с самых дальних от вентилятора и самых нагруженных участков.
  • Зная оптимальную скорость воздуха для данного помещения и объем воздуха, проходящего через воздуховод за 1 час, определим подходящий диаметр (или сечение) воздуховода.
  • Вычисляем потери давления на трение P тр.
  • По табличным данным определяем сумму местных сопротивлений Q и рассчитываем потери давления на местные сопротивления z.
  • Располагаемое давление для следующих ветвлений воздухораспределительной сети определяется как сумма потерь давления на участках, расположенных до данного ветвления.

В процессе расчета нужно последовательно увязать все ветви сети, приравняв сопротивление каждой ветви к сопротивлению самой нагруженной ветви. Это делают с помощью диафрагм. Их устанавливают на слабо нагруженные участки воздуховодов, повышая сопротивление.

Таблица максимальной скорости воздуха в зависимости от требований к воздуховоду

Назначение

Основное требование

Бесшумность

Мин. потери напора

Магистральные каналы

Главные каналы

Ответвления

Приток

Вытяжка

Приток

Вытяжка

Жилые помещения

Гостиницы

Учреждения

Рестораны

Магазины

Примечание: скорость воздушного потока в таблице дана в метрах в секунду

Метод постоянной потери напора

Данный метод предполагает постоянную потерю напора на 1 погонный метр воздуховода. На основе этого определяются размеры сети воздуховодов. Метод постоянной потери напора достаточно прост и применяется на стадии технико-экономического обоснования систем вентиляции:

  • В зависимости от назначения помещения по таблице допустимых скоростей воздуха выбирают скорость на магистральном участке воздуховода.
  • По определенной в п.1 скорости и на основании проектного расхода воздуха находят начальную потерю напора (на 1 м длины воздуховода). Для этого служит нижеприведенная диаграмма.
  • Определяют самую нагруженную ветвь, и ее длину принимают за эквивалентную длину воздухораспределительной системы. Чаще всего это расстояние до самого дальнего диффузора.
  • Умножают эквивалентную длину системы на потерю напора из п.2. К полученному значению прибавляют потерю напора на диффузорах.

Теперь по приведенной ниже диаграмме определяют диаметр начального воздуховода, идущего от вентилятора, а затем диаметры остальных участков сети по соответствующим расходам воздуха. При этом принимают постоянной начальную потерю напора.

Диаграмма определения потерь напора и диаметра воздуховодов

Использование прямоугольных воздуховодов

В диаграмме потерь напора указаны диаметры круглых воздуховодов. Если вместо них используются воздуховоды прямоугольного сечения, то необходимо найти их эквивалентные диаметры с помощью приведенной ниже таблицы.

Примечания:

  • Если позволяет пространство, лучше выбирать круглые или квадратные воздуховоды;
  • Если места недостаточно (например, при реконструкции), выбирают прямоугольные воздуховоды. Как правило, ширина воздуховода в 2 раза больше высоты).

В таблице по горизонтальной указана высота воздуховода в мм, по вертикальной - его ширина, а в ячейках таблицы содержатся эквивалентные диаметры воздуховодов в мм.

Таблица эквивалентных диаметров воздуховодов

Лекция 2. Потери давления в воздуховодах

План лекции. Массовый и объемный потоки воздуха. Закон Бернулли. Потери давления в горизонтальном и вертикальном воздуховодах: коэффициент гидравлического сопротивления, динамический коэффициент, число Рейнольдса. Потери давления в отводах, местных сопротивлениях, на разгон пылевоздушной смеси. Потери давления в высоконапорной сети. Мощность пневмотранспортной системы.

2. Пневматические параметры течения воздуха
2.1. Параметры воздушного потока

Под действием вентилятора в трубопроводе создается воздушный поток. Важными параметрами воздушного потока являются его скорость, давление, плотность, массовый и объемный расходы воздуха. Расходы воздуха объемный Q , м 3 /с, и массовый М , кг/с, связаны между собой следующим образом:

;
, (3)

где F – площадь поперечного сечения трубы, м 2 ;

v – скорость воздушного потока в заданном сечении, м/с;

ρ – плотность воздуха, кг/м 3 .

Давление в воздушном потоке различают статическое, динамическое и полное.

Статическим давлением Р ст принято называть давление частиц движущегося воздуха друг на друга и на стенки трубопровода. Статическое давление отражает потенциальную энергию воздушного потока в том сечении трубы, в котором оно измерено.

Динамическое давление воздушного потока Р дин , Па, характеризует его кинетическую энергию в сечении трубы, где оно измерено:

.

Полное давление воздушного потока определяет всю его энергию и равно сумме статического и динамического давлений, измеренных в одном и том же сечении трубы, Па:

Р = Р ст + Р д .

Отсчет давлений можно вести либо от абсолютного вакуума, либо относительно атмосферного давления. Если давление отсчитывается от нуля (абсолютного вакуума), то оно называется абсолютным Р . Если давление измерять относительно давления атмосферы, то это будет относительное давление Н .

Н = Н ст + Р д .

Атмосферное давление равно разности полных давлений абсолютного и относительного

Р атм = Р Н .

Давление воздуха измеряют Па (Н/м 2), мм водяного столба или мм ртутного столба:

1 мм вод. ст. = 9,81 Па; 1 мм рт. ст. = 133,322 Па. Нормальное состояние атмосферного воздуха соответствует следующим условиям: давление 101325 Па (760 мм рт. ст.) и температура 273К.

Плотность воздуха есть масса единицы объема воздуха. По уравнению Клайперона плотность чистого воздуха при температуре 20ºС

кг/м 3 .

где R – газовая постоянная, равная для воздуха 286,7 Дж/(кг  К); T – температура по шкале Кельвина.

Уравнение Бернулли. По условию неразрывности воздушного потока расход воздуха постоянен для любого сечения трубы. Для сечений 1, 2 и 3 (рис. 6) это условие можно записать так:

;

При изменении давления воздуха в пределах до 5000 Па плотность его остается практически постоянной. В связи с этим

;

Q 1 = Q 2 = Q 3 .

Изменение давления воздушного потока по длине трубы подчиняется закону Бернулли. Для сечений 1, 2 можно написать

где р 1,2 – потери давления, вызванные сопротивлением потока о стенки трубы на участке между сечениями 1 и 2, Па.

С уменьшением площади поперечного сечения 2 трубы скорость воздуха в этом сечении увеличится, так что объемный расход останется неизменным. Но с увеличением v 2 возрастет динамическое давление потока. Для того, чтобы равенство (5) выполнялось, статическое давление должно упасть ровно на столько, на сколько увеличится динамическое давление.

При увеличении площади сечения динамическое давление в сечении упадет, а статическое ровно на столько же увеличится. Полное же давление в сечении останется величиной неизменной.

2.2. Потери давления в горизонтальном воздуховоде

Потеря давления на трение пылевоздушного потока в прямом воздуховоде с учетом концентрации смеси, определяется по формуле Дарси-Вейсбаха, Па

где l – длина прямолинейного участка трубопровода, м;

 - коэффициент гидравлического сопротивления (трения);

d

р дин – динамическое давление, исчисляемое по средней скорости воздуха и его плотности, Па;

К – комплексный коэффициент; для трасс с частыми поворотами К = 1,4; для трасс прямолинейных с небольшим количеством поворотов
, где d – диаметр трубопровода, м;

К тм – коэффициент, учитывающий вид транспортируемого материала, значения которого приведены ниже:

Коэффициент гидравлического сопротивления  в инженерных расчетах определяют по формуле А.Д. Альтшуля

, (7)

где К э – абсолютная эквивалентная шероховатость поверхности, К э = (0,0001… 0,00015) м;

d внутренний диаметр трубы, м;

R е – число Рейнольдса.

Число Рейнольдса для воздуха

, (8)

где v средняя скорость воздуха в трубе, м/с;

d – диаметр трубы, м;

 - плотность воздуха, кг/м 3 ;

1 – коэффициент динамической вязкости, Нс/м 2 ;

Значение динамического коэффициента вязкости для воздуха находят по формуле Милликена, Нс/м2

 1 = 17,11845  10 -6 + 49,3443  10 -9 t , (9)

где t – температура воздуха, С.

При t = 16 С  1 = 17,11845  10 -6 + 49,3443  10 -9 16 =17,910 -6 .

2.3. Потери давления в вертикальном воздуховоде

Потери давления при перемещении аэросмеси в вертикальном трубопроводе, Па:

, (10)

где - плотность воздуха, = 1,2 кг/м 3 ;

g = 9,81 м/с 2 ;

h – высота подъема транспортируемого материала, м.

При расчете аспирационных систем, в которых концентрация аэросмеси  0,2 кг/кг значение р под учитывают только при h  10 м. Для наклонного трубопровода h = l sin, где l – длина наклонного участка, м;  - угол наклона трубопровода.

2.4. Потери давления в отводах

В зависимости от ориентации отвода (поворота воздуховода на некоторый угол) в пространстве различают два вида отводов: вертикальные и горизонтальные.

Вертикальные отводы обозначают начальными буквами слов, отвечающих на вопросы по схеме: из какого трубопровода, куда и в какой трубопровод направляется аэросмесь. Различают следующие отводы:

– Г-ВВ – транспортируемый материал движется из горизонтального участка вверх в вертикальный участок трубопровода;

– Г-НВ – то же из горизонтального вниз в вертикальный участок;

– ВВ-Г – то же из вертикального вверх в горизонтальный;

– ВН-Г – то же из вертикального вниз в горизонтальный.

Горизонтальные отводы бывают только одного типа Г-Г.

В практике инженерных расчетов потерю давления в отводе сети находят по следующим формулам.

При значениях расходной концентрации  0,2 кг/кг

где
- сумма коэффициентов местного сопротивления отводов ветви (табл. 3) при R / d = 2, где R – радиус поворота осевой линии отвода; d – диаметр трубопровода; динамическое давление воздушного потока .

При значениях   0,2 кг/кг

где - сумма условных коэффициентов, учитывающих потери давления на поворот и разгон материала за отводом.

Значения о усл находят по величине табличных т (табл. 4) с учетом коэффициента на угол поворота К п

о усл = т К п . (13)

Поправочные коэффициенты К п берут в зависимости от угла поворота отводов :

К п

Таблица 3

Коэффициенты местного сопротивления отводов о при R / d = 2

Конструкция отводов

Угол поворота, 

Отводы гнутые, штампованные, сварные из 5 звеньев и 2 стаканов

Такие потери пропорциональны динамическому давлению pд = ρv2/2, где ρ — плотность воздуха, равная примерно 1,2 кг/м3 при температуре около +20 °C, а v — его скорость [м/с], как правило, за сопротивлением. Коэффициенты пропорциональности ζ, называемые коэффициентами местного сопротивления (КМС), для различных элементов систем В и КВ обычно определяются по таблицам, имеющимся, в частности, в и в ряде других источников. Наибольшую сложность при этом чаще всего вызывает поиск КМС для тройников или узлов ответвлений, поскольку в этом случае необходимо принимать во внимание вид тройника (на проход или на ответвление) и режим движения воздуха (нагнетание или всасывание), а также отношение расхода воздуха в ответвлении к расходу в стволе Loʹ = Lo/Lc и площади сечения прохода к площади сечения ствола fnʹ = fn/fc. Для тройников при всасывании нужно учитывать еще и отношение площади сечения ответвления к площади сечения ствола foʹ = fo/fc. В руководстве соответствующие данные приведены в табл. 22.36-22.40.

Однако, при больших относительных расходах в ответвлении КМС меняются весьма резко, поэтому в этой области рассматриваемые таблицы вручную интерполируются с трудом и со значительной погрешностью. Кроме того, в случае использования электронных таблиц MS Excel опять-таки желательно иметь формулы для непосредственного вычисления КМС через отношения расходов и сечений. При этом такие формулы должны быть, с одной стороны, достаточно простыми и удобными для массового проектирования и использования в учебном процессе, но, в то же время, не должны давать погрешность, превышающую обычную точность инженерного расчета. Ранее подобная задача была решена автором применительно к сопротивлениям, встречающимся в водяных системах отопления . Рассмотрим теперь данный вопрос для механических систем В и КВ. Ниже приведены результаты аппроксимации данных для унифицированных тройников (узлов ответвлений) на проход. Общий вид зависимостей выбирался, исходя из физических соображений с учетом удобства пользования полученными выражениями при обеспечении допустимого отклонения от табличных данных:

❏ для приточных тройников, при Loʹ ≤ 0,7 и fnʹ ≥ 0,5:а при Loʹ ≤ 0,4 можно пользоваться упрощенной формулой:

❏ для вытяжных тройников:

Нетрудно заметить, что относительная площадь прохода fnʹ при нагнетании или соответственно ответвления foʹ при всасывании влияет на КМС одинаковым образом, а именно с увеличением fnʹ или foʹ сопротивление будет уменьшаться, причем числовой коэффициент при указанных параметрах во всех приведенных формулах один и тот же, а именно (-0,25). Кроме того, и для приточных, и для вытяжных тройников при изменении расхода воздуха в ответвлении относительный минимум КМС имеет место при одинаковом уровне Loʹ = 0,2. Данные обстоятельства говорят о том, что полученные выражения, несмотря на свою простоту, в достаточной мере отражают общие физические закономерности, лежащие в основе влияния исследуемых параметров на потери давления в тройниках любого типа. В частности, чем больше fnʹ или foʹ, т.е. чем ближе они к единице, тем меньше меняется структура потока при прохождении сопротивления, а значит, и меньше КМС. Для величины Loʹ зависимость является более сложной, но и здесь она будет общей обоих режимов движения воздуха.

Представление о степени соответствия найденных соотношений и исходных значений КМС дает рис. 1, где показаны результаты обработки таблицы 22.37 для КМС унифицированных тройников (узлов ответвлений) на проход круглого и прямоугольного сечения при нагнетании. Примерно такая же картина получается и для аппроксимации табл. 22.38 с помощью формулы (3). Заметим, что, хотя в последнем случае речь идет о круглом сечении, нетрудно убедиться, что выражение (3) достаточно удачно описывает и данные табл. 22.39, относящиеся уже к прямоугольным узлам.

Погрешность формул для КМС в основном составляет 5-10 % (максимально до 15 %). Несколько более высокие отклонения может давать выражение (3) для тройников при всасывании, но и здесь это можно считать удовлетворительным с учетом сложности изменения сопротивления в таких элементах. Во всяком случае, характер зависимости КМС от влияющих на него факторов здесь отражается очень хорошо. При этом полученные соотношения не требуют никаких иных исходных данных, кроме уже имеющихся в таблице аэродинамического расчета. В самом деле, в ней в явном виде должны быть указаны и расходы воздуха, и сечения на текущем и на соседнем участке, входящие в перечисленные формулы. Особенно это упрощает вычисления при использовании электронных таблиц MS Excel.

В то же время формулы, приведенные в настоящей работе, весьма просты, наглядны и легко доступны для инженерных расчетов, особенно в MS Excel, а также в учебном процессе. Их применение позволяет отказаться от интерполяции таблиц при сохранении точности, требуемой для инженерных расчетов, и непосредственно вычислять КМС тройников на проход при самых разнообразных соотношениях сечений и расходов воздуха в стволе и ответвлениях. Этого вполне достаточно для проектирования систем В и КВ в большинстве жилых и общественных зданий.

1. А.Д. Альтшуль, Л.С. Животовский, Л.П. Иванов. Гидравлика и аэродинамика. — М.: Стройиздат, 1987.
2. Справочник проектировщика. Внутренние санитарно-технические устройства. Ч. 3. Вентиляция и кондиционирование воздуха. Кн. 2 / Под ред. Н.Н. Павлова и Ю.И. Шиллера. — М.: Стройиздат, 1992.
3. О.Д. Самарин. О расчете потерь давления в элементах систем водяного отопления // Журнал С.О.К., №2/2007.