Приемы подачи воздушно механической пены. Особенности применения воздушно-механической пены для тушения пожаров

Виды воздушно механических пен

Воздушно-механическая пена образуется в результате интенсивного механического перемешивания водного раствора пенообразователя с воздухом.

Для получения пены применяются пенообразователи ПО-1 и ПО-6.

Пенообразователь ПО-l представляет собой нейтрализованный керосиновый контакт, содержащий не менее 45% суль- фокислот. Для получения необходимой кратности и стойкости пены в него добавляют 4,5% клея и 10% спирта или этилен- гликоля.

Пенообразователь ПО-6 является продуктом щелочного гидролиза технической крови животных. Для придания устойчивости пены в него добавляют 1% сернокислого закисного железа. Чтобы предотвратить загнивание пенообразователя при длительном хранении, в него добавляют 4% фтористого натрия.

Пенообразователи должны удовлетворять требованиям ГОСТ 6948--54 и ГОСТ 9603--61.

Воздушно-механическая пена состоит из пузырьков, оболочка которых образована из раствора пенообразователя. В пузырьках содержится (в зависимости от пенообразователя) воздуха до 90%, воды 9,5% и пенообразователя до 0,5%. Удельный вес пены от 0,11 до 0,17.

Получается воздушно-механическая пена с помощью специальных аппаратов (смесителей и воздушно-пенных стволов). Стойкость пены на основе пенообразователя ПО-1 составляет 30 мин, а на основе пенообразователя ПО-6-- не менее 60 мин. ВНИИПО разработана рецептура пенообразователя ПО-8 для получения воздушно-механической пены повышенной стойкости, которая используется при тушении нефтепродуктов" и полярных жидкостей (спирта, ацетона и др.).

Воздушно-механическую пену по кратности выхода подразделяют на пену нормальной и высокой кратности.

Пена нормальной кратности считается в том случае, когда из 1 л пенообразователя ПО-1 и 25 л воды образуется от 200 до 300 л пены, из 1 л пенообразователя ПО-6 и 25 л воды -- от 125 до 175 л.

Пена из пенообразователя ПО-6 более стойка, чем из пенообразователя ПО-1. Для получения пены нормальной кратности используют водные растворы пенообразователей ПО-1 (3--4% по объему) и ПО-6 (4--6% по объему).

Пенообразователь ПО-1 считается годным, если кратность выхода пены не менее 10, стойкость ее не менее 30 мин, а пенообразователь ПО-6,-- если кратность выхода пены не менее 5, стойкость ее не менее 60 мин.

Пена нормальной кратности хорошо удерживается на вертикальных поверхностях, поэтому она может применяться для защиты материалов и конструкций от загорания при воздействии лучистой теплоты.

Воздушно-механическую пену нормальной кратности целесообразно применять для тушения нефтепродуктов с температурой вспышки 45° С и выше, находящихся в емкостях, и нефтепродуктов с температурой вспышки 45° С и ниже (за исключением авиабензина), разлитых тонким слоем по твердому покрову или на поверхности воды.

Ее можно использовать также для тушения нефтепродуктов с температурой вспышки 45° С и ниже (за исключением бензина) в емкостях. Но при этом надо помнить, что для тушения нефтепродуктов с температурой вспышки 28° С и ниже на площади не более 100 м2 можно применять воздушно-механическую пену нормальной кратности на основе пенообразователя ПО-1, а на площади не более 400--500 м2 -- на основе пенообразователя ПО-6. Расстояние от верхней кромки борта емкости до зеркала жидкости должно быть не более 2 м. Это условие следует соблюдать также и при тушении нефтепродуктов с температурой вспышки от 28 до 45° С.

Пенообразователи неэффективны при тушении пожаров полярных жидкостей (спирта, эфира, ацетона).

Для тушения нефтепродуктов (бензина, керосина, сырой нефти, мазута) наряду с пенообразователем ПО-1 используют смачиватель НБ.

ВНИИПО разработан способ тушения нефтепродуктов в емкостях путем подачи воздушно-механической пены через слой горючего. В данном случае пожар можно тушить при любом уровне горючего в емкостях.

Пена высокой кратности на основе пенообразователей ПО-1 или ПО-6 вырабатывается, специальным генератором, работающим по принципу усиленного подсоса воздуха. Она может применяться для локализации пожаров твердых веществ, пламенного горения в помещениях. Высокую огнегасительную эффективность пена дает при тушении нефтепродуктов.

При тушении ею пламенного горения в помещениях происходит вытеснение дыма и продуктов сгорания, локализация очагов горения, создаются благоприятные условия для полного прекращения горения.

По мере заполнения помещений пеной высокой кратности температура в них быстро снижается в результате вытеснения горячих газов, прекращения горения и частичного охлаждения конструкций. Температура в горящем помещении, как свидетельствует практика, сразу же после подачи в него пены может снизиться с 1000° С и более до 65--50° С.

После заполнения помещения пеной температура в нем может вновь повыситься, так как нагретые конструкции перекрытий из-за кратковременного действия пены не успевают охлаждаться.

Пеной высокой кратности можно тушить лишь пламя вследствие наличия в ней большого количества воздуха и ограниченного времени ее подачи. Очаги тления твердых веществ при этом остаются непогашенными.

Под воздействием теплоты, выделяющейся при тлении, пена быстро разрушается.

Полная ликвидация очагов тления зависит от интенсивности и времени подачи пены и от того, насколько быстро она проникает к местам горения.

Практически пена высокой кратности нетеплопроводна. Колебания температуры окружающей среды от --30 до +30° С существенного влияния на качество пены не оказывают. При низких температурах (ниже --15° С) стойкость пены несколько снижается, хотя на поверхности ее образуется устойчивая корка. Высокая температура ускоряет разрушение пены.

Пена не оказывает вредного действия на большинство материалов и оборудование, не создает дополнительной нагрузки на конструкции в связи с незначительным объемным весом ее.

Пенообразующий раствор является хорошим смачивателем и поэтому свободно проникает внутрь материалов, в том числе волокнистых.

При пользовании воздушно-механической пеной значительно облегчается труд пожарных во время тушения пожара. Поэтому ее широко применяют при тушении пожаров, она является основным средством пожаротушения.

При тушении нефтепродуктов необходимо применять расчетное количество как химической, так и воздушно-механической пены. Указания по их расчету излагаются в приложении 4 «Правил пожарной безопасности на речном транспорте Министерства речного флота РСФСР».

Углекислота (техническое название двуокиси углерода) С02 -- бесцветный газ с едва ощутимым запахом, не горит и не поддерживает горения, не проводит ток. Огнегасительная концентрация паров углекислоты в воздухе должна быть 22,4% (по объему). При 0°С и давлении 36 кгс/см2 легко сжижается, переходя из газообразного состояния в жидкое.

Теплота испарения жидкой углекислоты 47,7 кал/кг. При быстром испарении жидкой углекислоты образуется твердая (снегообразная) углекислота. Удельный вес такой углекислоты при температуре --79° С равен 1,53. Углекислота или углекислый снег, направленные в зону пожара, снижают концентрацию кислорода в ней до такой величины, при которой невозможно горение, а также охлаждают горящее вещество и окружающую среду, в результате чего горение прекращается.

Углекислота применяется для тушения пожаров в закрытых помещениях (в условиях ограниченного воздухообмена) и на сравнительно небольшой площади непосредственно на /воздухе. Она используется для тушения пожаров электроустановок под напряжением.

При тушении пожаров в закрытых помещениях расходуется 0,495 кг/м3 углекислоты, а в наиболее пожароопасных помещениях --0,594 /кг/м3.

Пламенное горение в грузовом трюме судна при применении углекислоты прекращается в тех случаях, когда процентное содержание кислорода в нем снижается до 14%. Тление же при этом продолжается. Для его прекращения содержание кислорода в трюме необходимо довести до 5%. Углекислоту надо подавать в трюм до тех пор, пока полностью не прекратится тление, а оно может продолжаться от нескольких часов до одних-двух суток.

Углекислота как самостоятельное огнегасительное средство в стационарных противопожарных установках на речном транспорте применяется редко. Она заменяется более эффективными средствами -- галоидуглеводородами: бромистым этилом, бромистым метиленом, тетрафтордибромэтаном, которые входят в составы таких огнегасительных смесей, как «3,5», СЖБ и однокомпонентный фреон-114В2.

пожар тушение пена огнегасительный

Анализ условий труда на рабочих местах в производственных помещениях

В зависимости от возможности защиты человека в условиях взаимодействия его с потенциально опасными объектами можно рассматривать два основных метода: 1. обеспечение недоступности к опасно действующим частям машин и оборудования; 2...

Безопасность жизнедеятельности на производстве

Источники света, применяемые для искусственного освещения, делят на две группы - газоразрядные лампы и лампы накаливания. Лампы накаливания относятся к источникам света теплового излучения...

Безопасность производственной деятельности и средства индивидуальной защиты

Опасные механические факторы: механические движения и действия технологического оборудования, инструмента, механизмов и машин. К средствам индивидуальной защиты от механических воздействий относятся рабочая одежда, очки, рукавицы...

Опасные и вредные производственные факторы

К средствам защиты от механического травмирования относятся предохранительные тормозные, оградительные устройства, средства автоматического контроля и сигнализации, знаки безопасности и т.п...

Организация аварийно–спасательных и восстановительных работ в Республике Коми

Аварийно-спасательные работы при чрезвычайных ситуациях межмуниципального и регионального характера (далее - аварийно-спасательные работы) на территории Республики Коми, подвергшейся воздействию аварий, катастроф или иных стихийных бедствий...

Организация обучения безопасности труда

Воздушно-механическая пена образуется при механическом смешивание воздуха, воды и поверхностно-активного вещества (пенообразователей ПО-1, ПО-6, ПО-11 и др). Воздушно-механическая пена может быть обычной...

Организация условий труда на рабочем месте

Производственное освещение бывает: Естественным: обусловлено прямыми солнечными лучами и рассеянным светом небосвода. Меняется в зависимости от географической широты, времени суток, степени облачности, прозрачности атмосферы...

Первичные средства пожаротушения

Огнетушители воздушно-пенные используются при тушении пожаров классов А и В (дерево, краски и ГСМ) не допускается применять для тушения электроустановок под напряжением, а также щелочных металлов...

Пожароопасные объекты

Пожары по своим масштабам и интенсивности подразделяются на виды. Отдельный пожар - пожар, возникший в отдельном здании или сооружении...

Приоритетные критерии качества жизни среди студентов Темниковского медицинского колледжа

Здоровье - главный показатель качества жизни. Известно, что состояние здоровья человека в нынешних условиях существенно зависит от условий, в которых он находится (защищенность пребывания в социуме, санитарно-гигиеническое состояние помещений...

Сигналы оповещения Способы подачи сигнала Цель подачи сигнала Дейсвия населения при получении сигнала Внимание ВСЕМ! Звуковой сигнал с помощью сирен, гудков и других звуковых средств оповещения...

Сигнал "Воздушная тревога" и действия населения при его объявлении

Раны делятся на: · поверхностные -- неглубокие, когда повреждается только одна кожа · глубокие -- захватывающие подкожные ткани, мышцы, кости В зависимости от величины раны делятся на малые, средние и обширные...

Системы контроля требований безопасности и экологичности

В Российской Федерации существует несколько видов мониторинга, которые контролируют исполнение и наличие самих требований безопасности и экологичности...

Служба безопасности предприятия

Вводный инструктаж проводится со всеми вновь принимаемыми на работу независимо от их образования, стажа работы по данной профессии или должности, а также с командированными работниками, учащимися, студентами...

Улучшение условий труда слесаря по сборке металлоконструкций

В РММ происходят следующие технологические процессы: - диагностические работы; - ремонт деталей (шлифование, сверление...

Воздушно-механическая пена предназначена для тушения пожаров жидких (класс пожара В) и твердых (класс пожара А) горючих веществ. Пена представляет собой ячеисто-пленочную дисперсную систему, состоящую из массы пузырьков газа или воздуха, разделенных тонкими пленками жидкости.

Получают воздушно-механическую пену механическим перемешиванием пенообразующего раствора с воздухом. Основным огнетушащим свойством пены является ее способность препятствовать поступлению в зону горения горючих паров и газов, в результате чего горение прекращается. Существенную роль играет также охлаждающее действие огнетушащих пен, которое в значительной степени присуще пенам низкой кратности, содержащим большое количество жидкости.

Важной характеристикой огнетушащей пены является ее кратность – отношение объема пены к объему раствора пенообразователя, содержащегося в пене. Различают пены низкой (до 10), средней (от 10 до 200) и высокой (свыше 200) кратности. Пенные стволы классифицируются в зависимости от кратности получаемой пены (рис. 3.23).

ПЕННЫЕ ПОЖАРНЫЕ СТВОЛЫ

Для получения пены низкой кратности

Для получения пены средней кратности

Комбинированные для получения пены низкой и средней кратности

Рис. 3.23. Классификация пенных пожарных стволов

Пенный ствол – устройство, устанавливаемое на конце напорной линии для формирования из водного раствора пенообразователя струй воздушно-механической пены различной кратности.

Для получения пены низкой кратности применяются ручные воздушно-пенные стволы СВП и СВПЭ. Они имеют одинаковое устройство, отличаются только размерами, а также эжектирующим устройством, предназначенным для подсасывания пенообразователя из емкости.

Ствол СВПЭ (рис. 3.24) состоит из корпуса 8 , с одной стороны которого навернута цапковая соединительная головка7 для присоединения ствола к рукавной напорной линии соответствующего диаметра, а с другой – на винтах присоединена труба5 , изготовленная из алюминиевого сплава и предназначенная для формирования воздушно-механической пены и направления ее на очаг пожара. В корпусе ствола имеются три камеры: приемная6 , вакуумная3 и выходная4 . На вакуумной камере расположен ниппель2 диаметром 16 мм для присоединения шланга1 , имеющего длину 1,5 м, через который всасывается пенообразователь. При рабочем давлении воды 0,6 МПа создается разрежение в камере корпуса ствола не менее 600 мм рт. ст. (0,08 МПа).

Рис. 3.24. Ствол воздушно-пенный с эжектирующим устройством типа СВПЭ:

1 – шланг; 2 – ниппель; 3 – вакуумная камера; 4 – выходная камера; 5 – направляющая труба; 6 – приемная камера; 7 – соединительная головка; 8 – корпус

Принцип образования пены в стволе СВП (рис. 3.25) заключается в следующем. Пенообразующий раствор, проходя через отверстие 2 в корпусе ствола1 , создает в конусной камере3 разрежение, благодаря которому воздух подсасывается через восемь отверстий, равномерно расположенных в направляющей трубе4 ствола. Поступающий в трубу воздух интенсивно перемешивается с пенообразующим раствором и образует на выходе из ствола струю воздушно-механической пены.

Рис. 3.25. Ствол воздушно-пенный СВП:

1 – корпус ствола; 2 – отверстие; 3 – конусная камера; 4 – направляющая труба

Принцип образования пены в стволе СВПЭ отличается от СВП тем, что в приемную камеру поступает не пенообразующий раствор, а вода, которая, проходя по центральному отверстию, создает разрежение в вакуумной камере. Через ниппель в вакуумную камеру по шлангу из ранцевого бочка или другой емкости подсасывается пенообразователь. Технические характеристики пожарных стволов для получения пены низкой кратности представлены в табл. 3.10.

Таблица 3.10

Показатель

Размерность

Тип ствола

Производительность по пене

Рабочее давление перед стволом

Расход воды

Кратность пены на выходе из ствола

(не менее)

(не менее)

Дальность подачи пены

Соединительная головка

Для получения из водного раствора пенообразователя воздушно-механической пены средней кратности и подачи ее в очаг пожара используются генераторы пены средней кратности.

В зависимости от производительности по пене выпускаются следующие типоразмеры генераторов: ГПС-200; ГПС-600; ГПС-2000. Их технические характеристики представлены в табл. 3.11.

Таблица 3.11

Показатель

Размерность

Генератор пены средней кратности

Производительность по пене

Кратность пены

Давление перед распылителем

Расход 4 – 6 % раствора пенообразователя

Дальность подачи пены

Соединительная головка

Генераторы пены ГПС-200 и ГПС-600 по конструкции идентичны и отличаются только геометрическими размерами распылителя и корпуса. Генератор представляет собой водоструйный эжекторный аппарат переносного типа и состоит из следующих основных частей (рис. 3.26): корпуса генератора 1 с направляющим устройством, пакета сеток2 , распылителя центробежного3 , насадка4 и коллектора5 . К коллектору генератора при помощи трех стоек крепится корпус распылителя, в котором вмонтирован распылитель3 и муфтовая головка ГМ-70. Пакет сеток2 представляет собой кольцо, обтянутое по торцевым плоскостям металлической сеткой (размер ячейки 0,8 мм). Распылитель вихревого типа3 имеет шесть окон, расположенных под углом 12 ° , что вызывает закручивание потока рабочей жидкости и обеспечивает получение на выходе распыленной струи. Насадок4 предназначен для формирования пенного потока после пакета сеток в компактную струю и увеличения дальности полета пены. Воздушно-механическая пена получается в результате смешения в генераторе в определенной пропорции трех компонентов: воды, пенообразователя и воздуха. Поток раствора пенообразователя под давлением подается в распылитель. В результате эжекции при входе распыленной струи в коллектор происходит подсос воздуха и перемешивание его с раствором. Смесь капель пенообразующего раствора и воздуха попадает на пакет сеток. На сетках деформированные капли образуют систему растянутых пленок, которые, замыкаясь в ограниченных объемах, составляют сначала элементарную (отдельные пузырьки), а затем массовую пену. Энергией вновь поступающих капель и воздуха масса пены выталкивается из пеногенератора.

Вкачестве пенных пожарных стволов комбинированного типа рассмотрим установки комбинированного тушения пожаров (УКТП) «Пурга», которые могут быть ручного, стационарного и мобильного исполнения. Они предназначены для получения воздушно-механической пены низкой и средней кратности. Технические характеристики УКТП различного исполнения представлены в табл. 3.12. Кроме того, для этих стволов разработаны диаграмма радиуса действия и карта орошения (рис. 3.27), что позволяет более четко оценивать их тактические возможности при тушении пожаров.

Таблица 3.12

Показатель

Размер- ность

Установка комбинированного тушения пожара (УКТП) типа

«Пурга-5»

«Пурга-7»

«Пурга-10»

«Пурга-10.20.30»

«Пурга-30.60.90»

«Пурга-200–240»

Производительность по раствору пенообразователя

Производительность по пене средней кратности

Дальность подачи струи пены средней кратности

Рабочее давление перед стволом

Кратность пены

пенообразователя

Тема Назначение виды и устройство оборудования для получения воздушно-механической пены

Вид занятия : классно-групповое

Отводимое время : 1 учебный час.

Литература: учебник «Пожарная техника»

Развернутый план занятий.

Пенообразователи общего назначения изготовляются на основе дешевого и доступного сырья. Используются для получения пены и растворов смачивателей.

Предназначены для тушения пожаров нефтепродуктов, дерева, ткани, бумаги, торфа, хлопка, каучука, пластмасс и т.д. Служат для получения пены низкой, средней кратности и высокой.

К ним относятся:

  • ТЭАС – А

Преобразователи целевого назначения

Пенообразователи целевого назначения используются для получения пены, при тушении пожаров нефтепродуктов и различных классов горючих жидкостей наиболее пожароопасных объектов, а также для применения с морской водой, при низкой температуре и других особых условиях. Некоторые из них изготавливаются на основе дефицитного дорогостоящего сырья.

К ним относятся:

    Пленкообразующий

  • Универсальный

Физико-химические и огнетушащие свойства пен.

Огнетушащие пены разделяются на химическую и воздушно - механическую.

Химическая пена (кратность до 6)получают в результате химической реакции между кислой и щелочной частями:

Fe2(S04)3+6NaHC03-)-3Na2S04+2Fe(OH)3+6C02

H 2 S 04+2 NaHC 03-> Na 2 S 04+2 C 02+2 H 20

Воздушно - механическая пена получается путем механического перемещения трех компонентов: воды, пенообразователя и воздуха.

Согласно ГОСТ 12.1.114-82 ВМП подразделяется на три вида:

    ВМП низкой кратности К<20 (для расчетов К=10) ВМП

    средней кратности 20^К^200 (для расчетов К=100)

    ВМП высокой кратности К>200 (для расчетов К=1000)

Физико-химические и огнетушащие свойства пен и область их применения .

Огнетушащие пены представляют собой совокупность пузырьков ,

состоящих из

жидкостной оболочки, заполненной воздухом или газами, т.е. пена - это

концентрированная эмульсия газа и в жидкости.

Химическая пена состоит на 80% С02 (углекислого газа) , 19,7% водного раствора и 0,3% пенообразующих веществ.

ВМП состоит из 83-99,6% воздуха и 0,4-17% водного раствора ПО.

Основными свойствами пен независимо от способа их получения являются следующие:

1. Кратность пены - это отношение объема пены к объему пенообразующей жидкости. Кратность зависит от типа, качества и концентрации ПО в воде, от конструкции пенного прибора, от напора перед распылителем и от температуры подсасываемого воздуха.

2. Стойкость пены - это способность противостоять разрушению в течении определенного времени. Стойкость пены - это время в течении которого пена разрушается на 50% первоначального объема. Стойкость зависит: от вида ПО, свойств и температуры веществ, с которыми она взаимодействует, способа подачи, высоты пенного слоя. т=3,8-18мин (САМПО - несколько часов)

3. Высокая теплоемкость - пена, разрушаясь, охлаждает горящие вещества (строительные конструкции, ЛВЖ и ГЖ) за счет имеющегося в ее структуре водного раствора пенообразователя.

4. Небольшая плотность 4-170 кг/м 3 . Плотность зависит от кратности пены, Пена плавает на поверхности жидкостей, не создает чрезмерной нагрузки на покрытия, исключает потерю устойчивости судна при тушении пожаров.

5. Низкая теплопроводность - она близка к теплопроводности неподвижных газов. Это позволяет использовать пену в качестве теплоизоляционного экрана от действия лучистой энергии.

6.Изолирующая способность - при тушении пеной, слой пены препятствует проникновению паров в зону горения и тепла из зоны горения к поверхности вещества.

7. Вязкост ь - способность пены к растеканию.

8. Дисперстность - степень измельчения т.е. размеры пузырьков. С увеличением дисперстности пены, растет время ее существования, вязкость и парогазонепроницаемость.

Способ получения пен и предназначение для пожаротушения:

    Пена низкой кратности – стволы СВЭ; СВПЭ; ОРТ-50 с насадкой – тушение хлопка и родственных веществ, так же применяется для тушения резина образных изделий и паралона.

    Пена средней кратности – ГПС-600; ГПС-800; ГПС – 2000 – тушение ЛВЖ.

    Пена высокой кратности - получается ТОЛЬКО при помощи пожарного дымососа. Тушение объемных пожаров (подвалы). В этой пене можно дышать .

Схемы боевого развертывания с подачей ВМП



Пожарная пена

Как одно из наиболее эффективных огнетушащих веществ, пожарная пена известна уже больше ста лет. Изобретение оказалось столь эффективным, что до сих пор не нашлось пене достойной замены в пожарном деле.

Пена отлично противостоит горению моторного топлива, других нефтепродуктов и химических веществ, справляется с объемным тушением пожаров и с прочими сложными задачами. Пену применяют там, где использование воды неэффективно, нецелесообразно или даже опасно. Пенообразователь (средство, принимающее участие в создании пены) и профильное оборудование находится на вооружении пожарных, охраняющих не только предприятия химической и нефтехимической промышленности, но и аэродромы, крупные склады и другие ответственные объекты.

Историческая справка

Историю применения пены в теории и практике российских пожарных можно отсчитывать с 1904 года, года инженер, ученый и педагог Александр Лоран получил соответствующий патент. Изобретатель служил школьным учителем в Баку. Так как в этом городе находились нефтепромыслы, нефтяные пожары были ему хорошо известны. В результате ряда экспериментов Лоран получил устойчивую пену, созданную из сернокислого алюминия, бикарбоната натрия и воды. Пузырьки нового огнетушащего вещества без препятствий растекались по более тяжелой нефти и, буквально перекрыв кислород, останавливали огонь.

Сложность создания такой химической пены была в необходимости использовать многокомпонентные смеси. Проблема решилась через несколько десятилетий, когда были изобретены смеси, которые вспенивались при воздействии струи воздуха.

Классификация пожарной пены

Пена, как и полагается ей согласно названию, представляет собой пузырьки воздуха в пленке, созданной жидкостью. Соответственно, пенообразователь – вещество, которое применяется для создания пены.

Если говорить о способах классификации пены, то следует отметить два основных:

  • способ создания;
  • кратность.

Как отмечено выше, по способу создания пену разделяют на химическую, и на получаемую под воздействием воздуха в специальных устройствах. Химическая – это результат взаимодействия определенного набора компонентов. Воздушно-механическая пена - результат смешивания воздуха с так называемым пеноконцентратом.

Преимущество пожарные отдают воздушно-механической пене, в связи с ее отличными огнетушащими характеристиками, легкостью в обращении и с возможностью регулирования кратности.

Кратность пены представляет собой соотношение объема пеноконцентрата (или других исходных веществ) к объему полученной пены. По кратности пены различают:

  • пеноэмульсию (коэффициент меньше 3);
  • пену низкой кратности (коэффициент находится в диапазоне 3-20);
  • пену средней кратности (коэффициент находится в диапазоне 20-200);
  • пену высокой кратности (коэффициент больше 200).

Существенное значение имеет и классификация пенообразователей . Эти вещества синтетического происхождения принято делить на две большие группы:

  • с содержанием фтора;
  • с содержанием углеводородов.

Каждый из пенообразователей имеет предпочтительную область применения. По области применения пенообразователи делят на:

  • поверхностные, предназначенные для тушения пожаров на поверхности жидкостей и на других плоскостях;
  • локально-поверхностные, которыми укрощают огонь на определенных ограниченных поверхностях;
  • общеобъемные, предназначенные для нагнетания в закрытые помещения или резервуары;
  • локально-объемные, которыми заполняют внутреннюю часть оборудования, небольшие помещения и т.п.;
  • комбинированные, обладающие симбиозом характеристик описанных выше видов пенообразователей.

Особенности применения огнетушащей пены

За несколько десятилетий использования и усовершенствования огнетушащей пены определились и особенности ее применения. Так, пеной с невысоким уровнем кратности целесообразно поливать горящие поверхности. Она хорошо держит целостность, не пропускает горячие газы, снижает температуру горящей поверхности. Такая пена подается мощной струей даже на достаточно большие расстояния.

Пену средней и высокой кратности эффективно используют для изоляции объемов, для тушения пожаров в таких объемах, для вытеснения загрязненного воздуха из помещений, из вентиляционных систем и других объектов. В случае необходимости пену применяют вместе с другими огнетушащими веществами, в том числе и с порошковыми. Широкое распространение получило применение пожарной пены для покрытия взлетно-посадочных полос на случай экстренной посадки воздушного судна.

Статью прислал: beetle

Осуществлять подачу воздушно-механической пены можно как с установкой, так и без установки пожарных автомобилей на водоисточник (от ёмкостей пожарных автоцистерн). В любом случае подача воздушно-механической пены через воздушно-пенные стволы (ГПС-600, СВП, СПП, УКТП «Пурга», СРВД 2/300 и лафетный ствол) выполняется в следующей последовательности:

§ произвести забор и подачу воды в рукавную линию к воздушно-пенному стволу (стволам), как при подаче в водяные стволы (см. главу 11.1);

§ увеличив обороты двигателя, создать минимальный напор на выходе из насоса нормального давления 60 м вод. ст. (при подаче воздушно-пенных стволов ГПС-600, СВП, СПП, лафетного) или 80 м вод. ст. (при подаче стволов УКТП «Пурга»), а из насоса высокого давления 300 м вод. ст. Напор может быть увеличен в зависимости от длины рукавных линий. При заборе и подаче воды из гидранта водопроводной сети (вода поступает в насос из водопровода под избыточным давлением) оборотами двигателя и вентилями пожарной колонки (при необходимости прикрывая вентили пожарной колонки уменьшить подачу воды в насос) установить перепад давлений между напорной и всасывающей полостями насоса (по манометру и мановакуумметру) 5-6 кгс/см 2 ; например давление по манометру 7 кгс/см 2 , а по мановакуумметру 1,0 кгс/см 2 ;

§ установить дозатор пеносмесителя в требуемое положение, в соответствии с типом и количеством подаваемых воздушно-пенных стволов или с требуемой концентрацией водного раствора пенообразователя (см. раздел 3). При подаче воздушно-механической пены через УКТП «Пурга» установить требуемое положение дозатора в соответствии с таблицей 11.1. При наличии на пожарном насосе ручного дифференциального дозатора (некоторые образцы насосов "Ziegler"), а также при совместной работе с автомобилем пенного тушения, оборудованного таким дозатором, установить расход согласно таблице Приложения 8.

§ открыть кран от пенобака к пеносмесителю.

Подача пенообразователя в пеносмеситель также может производится из посторонней ёмкости (например из бочки с пенообразователем). В этом случае необходимо отвернуть заглушку на трубопроводе, соединяющем пеносмеситель с ёмкостью для пенообразователя, и присоединить к штуцеру шланг (шланг входит в комплектацию пожарного автомобиля). Свободный конец шланга опустить в ёмкость с пенообразователем и выполнить все операции по подаче воздушно-механической пены. При этом, в случае забора воды из открытого водоисточника, необходимо обеспечить плотное закрытие дозатора. В противном случае в насос вместо воды будет подсасываться только один пенообразователь.

Таблица 11.1

С целью рационального использования запаса огнетушащих средств пожарной автоцистерны, подачу воздушно-механической пены без её установки на водоисточник можно производить в следующей последовательности:

§ установить автоцистерну на место работы;

§ включить стояночную тормозную систему (при необходимости подложить упоры под колёса автомобиля);

§ присоединить к напорному патрубку насоса рукавную линию с воздушно-пенным стволом (стволами);

§ включить дополнительную трансмиссию привода пожарного насоса и выключить сцепление дополнительными органами управления из насосного отсека (для пожарных автомобилей с насосом заднего расположения);

§ проверить плотность закрытия всех вентилей и кранов пожарного насоса;

§ открыть задвижку «из цистерны»;

§ открыть одну из напорных задвижек для выпуска воздуха и после заполнения насоса водой закрыть её;

§ открыть пробковый кран (кран эжектора) пеносмесителя;

§ установить дозатор пеносмесителя в требуемое положение (в соответствии с типом и количеством подаваемых воздушно-пенных стволов);

§ открыть кран от пенобака к пеносмесителю;

§ включить сцепление или КОМ привода пожарного насоса (для пожарных автомобилей с насосом среднего расположения);

§ увеличив обороты двигателя довести давление воды в насосе до 2…3 кгс/см 2 , контролируя его величину по манометру;

§ плавно открывая напорную задвижку насоса и одновременно увеличивая обороты двигателя, установить необходимый напор насоса: 60…70 м вод. ст. – при подаче стволов ГПС-600, СВП, СПП, или 80…90 м вод. ст. при подаче стволов УКТП «Пурга».

При работе пожарного насоса по подаче воздушно-механической пены осуществлять постоянный контроль за уровнем пенообразователя и производить операции, как при работе пожарного насоса по подаче воды (см. главу 11.1).

По завершении подачи воздушно-механической пены или пенообразователя в пенобаке, закрыть кран от пенобака к пеносмесителю, и осуществить промывку пеносмесителя и насоса водой в следующей последовательности:

Открыть кран подачи воды из цистерны в пеносмеситель, или переключить магистраль подачи пенообразователя на подсос (подвод) воды из постороннего водоисточника (ёмкости);

Установить рукоятку дозатора на максимальное положение (например, дозатор пеносмесителя ПС-5 на цифру «5») и поработать насосом не менее 2…3 мин., проворачивая при этом рукоятку дозатора и пробковый кран (кран эжектора) пеносмесителя.

Завершив промывку пеносмесителя и насоса необходимо уменьшить обороты двигателя, закрыть кран подачи воды из цистерны в пеносмеситель (или отключить магистраль подвода воды в пеносмеситель из постороннего водоисточника), установить рукоятку дозатора и пробковый кран (кран эжектора) пеносмесителя в исходное положение и произвести операции, как при завершении подачи воды пожарным насосом (см. главу 11.1).


Вылетом называется горизонтальное расстояние от проекции вершины стрелы на грунт до оси вращения башни.

Автомобили АПС иногда имеют заводское обозначение ПСА (пожарно-спасательный автомобиль).

Виды и сроки проведения технических обслуживаний пожарных автомобилей указаны в главе 7.2.

Исключение составляют внедорожные автомобили, для которых движение на малой скорости при высокой нагрузке на двигатель является штатным режимом эксплуатации.

Устройство, работа и эксплуатация пеносмесителей рассматриваются в главах 3.4, 3.6 и 3.7.

В отличие от генераторов пены серии ГПС, для которых числовое обозначение соответствует производительности по пене в литрах в секунду, для УКТП «Пурга» в обозначении указывается секундный расход раствора пенообразователя. Например, «Пурга-20.40.60» имеет производительность по раствору 60 л/с.

Тарировка дозатора проводится по воде

При работе на загрязнённой воде или при длительной работе на режиме, близком к номинальному (давление в насосе более 0,8 МПа), целесообразно через каждые 20-30 минут поворачивать маслёнку на полоборота.

Допускается применять также Солидолы С (смазки УС или УС-1) по ГОСТ 1033-**, смазки "1-13" по ГОСТ 1631-**, и ЦИАТИМ-221 по ГОСТ-9433-**.

При работе на загрязнённой воде или в случае вынужденного применения вместо солидолов других смазок, не обладающих необходимой водостойкостью (например, ЦИАТИМ-201, -203, Литол-24), подпрессовку уплотнительного стакана необходимо производить поворотом колпачковой маслёнки на 1 оборот через каждые 20 минут работы насоса.

Неисправность характерна для автоцистерн моделей 63Б,137А, 153

На модели АВС-02Э и последних моделях АВС-01Э вакуумный клапан (поз 4 на рис. 3.28) не устанавливается.

Вакуумный насос АВС-02Э обеспечивает работу вакуумной системы только в ручном режиме.

Устройство ствола распылителя СРВД-2/300 рассматривается в главе 5.1

Порядок работы без воды для осушения насоса методом "сухой" прокрутки описан ниже.

На автомобилях, где включение привода производится только из кабины водителя, следует быстро перейти к насосному отсеку и выключить сцепление, после чего производить забор воды.

Допускается использовать трансмиссионные масла тех марок, которые применяются в пожарном автомобиле

Для тарировки электронного блока (а также в качестве резервного) используется эталонный датчик концентрации.

Слово "вода" не упоминается, т.к. бачок в зимнее время заправляется анитфризом (например, Тосолом А-40) или рекомендованной заводом-изготовителем специальной смесью (эмульсией), состоящей из 80% воды и 20% глицерина.

Для рукавов диаметром 89 мм рабочее давление составляет 1,4 МПа, для рукавов диаметром 150 мм – 1,2 МПа.

В пожарной охране Санкт-Петербурга, кроме того, кольцевыми полосками по всей окружности рукава обозначают категорию годности от первой (одна полоска) до третьей (три полоски).

Значения указаны при давлении воды перед гидроэлеватором 8±0,2 кгс/см 2 и давлении непосредственно после гидроэлеватора не менее 1,7 кгс/см 2 , погруженного на глубину 5±10 см.

В пожарной охране укоренилось условное разделение ручных стволов на две внесистемных группы: стволы "А" (работающие от рукавной линии Ø 77 мм и имеющие расход около 7 л/с) и стволы "Б" (линия Ø 51 мм, расход 2…3,5 л/с).

При установке колонки на гидрант необходимо чтобы вентили напорных патрубков колонки были закрыты. В противном случае блокировка торцевого ключа не позволит навинтить колонку на гидрант.

Напорно-всасывающий рукав применяется в том случае, если иным способом нельзя исключить перегибы напорного рукава на входе в горловину цистерны.

Электромагнитная обстановка в регионе определяется электромагнитной совместимостью радиоэлектронных средств, применяемых в данном регионе.

Автомобильный аккумулятор в комплект радиостанции не входит

Рабочая частота для любого из каналов может программироваться при помощи компьютера.

Режим сканирования – автоматическое переключение приёмника по определённым (заданным) каналам связи.

Активный канал – канал радиосвязи, в котором в данный момент одна из радиостанций находится в режиме передачи

При снижении показателей герметичности насоса необходимо выявить места неплотностей путём опрессовки насоса: водой на неработающем насосе за счёт создания в нем давления до 0,6 МПа от другого насоса или водой на работающем насосе созданием в нем давления до 1,2-1,3 МПа при закрытых напорных задвижках. Можно (при наличии соответствующей оснастки) опрессовать неработающий насос воздухом под давлением 0,2-0,3 МПа, предварительно покрыв места возможных утечек мыльной пеной.

При проведении ТО-1000 на СТО неисправности узлов и агрегатов шасси, возникшие в период гаранитйного срока, устраняются тоже на СТО, а при проведении этого ТО в пожарной части вопросы гарантийного ремонта решаются на основании Акта рекламации уже не с заводом-изготовителем шасси, а с организацией-поставщиком пожарного автомобиля. Это, как правило, требует несоизмеримо бóльших затрат времени.

В приложении 5 приведены для примера карты смазки автоцистерны АЦ-40 модели 63Б и шасси ЗИЛ-431410.

НПБ 181-99 "Автоцистерны пожарные и их составные части. Выпуск из ремонта. Общие технические требования. Методы испытаний.", НПБ 195-00 "Автолестницы пожарные и их составные части. Выпуск из ремонта. Общие технические требования. Методы испытаний.", НПБ 198-01 "Автоподъемники пожарные и их составные части. Выпуск из ремонта. Общие технические требования. Методы испытаний." и др.

Строго говоря, надбавка может быть и 5%, и 7%, поскольку всё это входит в понятие "до 10%". Но на практике, как правило, принимается максимальная величина.

ЕДДС-единая дежурно-диспетчерская служба; ЦУС-центр управления силами; ЦППС-центральный пункт пожарной связи.

Если ремонт производился без остановки двигателя.

При неисправном спидометре АБС не работает.

Если заболоченный участок имеет ширину (до чистой воды) 12-15 метров, а высота всасывания невелика (2-3 м), можно забрать и подать воду через три или даже четыре всасывающих рукава (при наличии второго комплекта рукавов с другого автомобиля). Это имеет смысл в тех случаях, когда требуемый для тушения пожара расход воды превышает возможности гидроэлеватора. Существует также способ забора воды через присоединённую к стандартному водосборнику линию из 6-ти напорно-всасывающих рукавов Ø75 мм с всасывающей сеткой СВ-80 (входящей в комплектацию мотопомпы МП-800Б). В этом случае водоотдача пожарного насоса типа ПН-40 составляет для высоты всасывания 1,5 – 2 м около 15 л/с.

Максимальный напор в противопожарном водопроводе низкого давления не превышает 60 м.

Дифференциальный дозатор обеспечивает бесступенчатую регулировку количества пенообразователя с указанием его расхода по шкале (лимбу), проградуированной в л/с (литрах в секунду).

Для пожарных автомобилей с насосом типа НЦПВ 4/400 промывку пеносмесителя и насоса водой следует выполнять только из постороннего водоисточника (гидранта водопроводной сети), т.к. в цистерне может присутствовать достаточно большое количество пенообразователя, попавшего туда через перепускной трубопровод (см. главу 3.6).