Производство воды в пластиковых бутылках. Почему нельзя пить воду из пластика и почему пластиковую бутылку стоит выбросить прямо сейчас

Возникают взаимные давления частиц тела друг на друга. организм воспринимает такие давления как ощущение весомости. результат имеет место для тела, которое находится в лифте, движущемся по вертикали вниз с ускорением a ¹ g, где g - свободного падения. Но при а = g тело (все его частицы) и совершают свободное и никаких взаимных давлений друг на друга не оказывают; в результате здесь имеет место Н. При этом на все частицы тела, находящегося в состоянии Н., силы тяжести действуют, но нет внешних сил, приложенных к поверхности тела (например, реакций опоры), которые могли бы вызвать взаимные давления частиц на друга. Подобное же явление наблюдается для тел, помещенных в искусственном спутнике Земли (или космическом корабле); эти тела и все их частицы, получив вместе со спутником соответствующую начальную , движутся под действием сил тяготения своих орбит с равными ускорениями, как свободные, не оказывая взаимных давлений друг на друга, т. е. находятся в состоянии Н. Как и на тело в лифте, на них действует сила тяготения, но нет внешних сил, приложенных к поверхностям тел, которые могли бы вызвать взаимные давления тел или их частиц друг на друга.

Вообще под действием внешних сил будет в состоянии Н., : а) действующие внешние силы являются массовыми (силы тяготения); б) поле этих массовых сил локально однородно, т. е. силы сообщают всем частицам тела в каждом его положении одинаковые по модулю и направлению ускорения; в) начальные скорости всех частиц тела по модулю и направлению одинаковы (тело движется поступательно). Т. о., любое тело, размеры которого малы по сравнению с земным радиусом, совершающее свободное поступательное в поле тяготения Земли, будет, при отсутствии других внешних сил, находиться в состоянии Н. Аналогичным будет результат для движения в поле тяготения любых других небесных тел.

Вследствие значительного отличия условий Н. от земных условий, в которых создаются и отлаживаются и агрегаты искусственных спутников Земли, космических кораблей и их ракет-носителей, проблема Н. занимает важное др. проблем космонавтики. Это наиболее существенно для систем, имеющих ёмкости, частично заполненные жидкостью. К ним относятся двигательные установки с ЖРД, рассчитанные на многократное включение в условиях космического полёта. В условиях Н. может произвольное в ёмкости, нарушая тем самым нормальное функционирование системы (например, подачу компонентов из топливных баков). Поэтому для обеспечения запуска жидкостных двигательных установок в условиях Н. применяются: разделение жидкой и газообразной фаз в топливных баках с помощью эластичных разделителей (например, на АМС «Маринер»); части жидкости у заборного устройства системой сеток (ракетная «Аджена»); кратковременных перегрузок (искусственной «тяжести») перед включением основной двигательной установки с помощью вспомогательных ракетных двигателей и др. специальных приёмов необходимо и для разделения жидкой и газообразной фаз в условиях Н. в ряде агрегатов системы жизнеобеспечения , в топливных элементах системы энергопитания (например, конденсата системой пористых фитилей, жидкой фазы с помощью центрифуги). Механизмы космических аппаратов (для открытия солнечных батарей, антенн, для стыковки и т. п.) рассчитываются на работу в условиях Н.

Н. может быть использована для осуществления некоторых технологических процессов, которые трудно или невозможно в земных условиях (например, получение композиционных материалов с однородной структурой во всём объёме, получение тел точной сферической формы из расплавленного материала за счёт сил поверхностного натяжения и др.). по сварке различных материалов в условиях Н. и вакуума был осуществлен при полёте советского космического корабля « -6» (1969). Ряд технологических (по сварке, исследованию течения и кристаллизации расплавленных материалов и т. п.) был проведён на американской орбитальной станции «Скайлэб» (1973).

Особенно существенно учитывать своеобразие условий Н. при полёте обитаемых космических кораблей: условия жизни человека в состоянии Н. резко отличаются от привычных земных, что вызывает изменения ряда его жизненных функций. Так, Н. ставит центральную нервную систему и многих анализаторных систем (вестибулярного аппарата, мышечно-суставного аппарата, кровеносных сосудов) в необычные условия функционирования. Поэтому Н. рассматривают как специфический интегральный раздражитель, действующий на организм человека и животного в течение всего орбитального полёта. Ответом на раздражитель являются приспособительные процессы в физиологических системах; степень их проявления зависит от продолжительности Н. и в значительно меньшей степени от индивидуальных особенностей организма.

С наступлением состояния Н. у некоторых космонавтов возникают вестибулярные расстройства. Длительное сохраняется чувство тяжести в области (за счёт усиленного притока крови к ней). Вместе с тем к Н. происходит, как правило, без серьёзных осложнений: в Н. сохраняет работоспособность и успешно выполняет различные рабочие , в том числе те из них, которые требуют координации или затрат энергии. Двигательная активность в состоянии Н. требует меньших энергетических затрат, чем аналогичные движения в условиях весомости. Если в полёте не применялись средства профилактики, то в первые и сутки после приземления (период реадаптации к земным условиям) у человека, совершившего космический полёт, наблюдается следующий изменений. 1) Нарушение вертикальную позу в статике и динамике; тяжести частей тела (окружающие предметы воспринимаются как необычно тяжёлые; наблюдается растренированность в дозировании мышечных усилий). 2) Нарушение гемодинамики при работе средней и высокой интенсивности; возможны предобморочные и обморочные состояния перехода из горизонтального положения в вертикальное (ортостатические пробы). 3) Нарушение процессов обмена веществ, особенно водно-солевого обмена , что сопровождается относительным обезвоживанием тканей, снижением объёма циркулирующей крови, уменьшением содержания в тканях ряда элементов, в частности калия и кальция. 4) Нарушение кислородного режима организма при физических нагрузках. 5) Снижение иммунобиологической резистентности. 6) Вестибуло-вегетативные расстройства. Все эти сдвиги, вызванные Н., - обратимы. Ускоренное восстановление нормальных функций может быть достигнуто с помощью физиотерапии и лечебной физкультуры, а также применением лекарственных препаратов. Неблагоприятное Н. на организм человека в полёте можно или ограничить с помощью различных средств и методов (мышечная , электростимуляция мышц, отрицательное , приложенное к нижней половине тела, фармакологические и др. средства). В полёте продолжительностью около 2 месяцев (

Введение сил инерции упрощает и делает более наглядным решение целого ряда вопросов и задач о движении тел в неинерциальных системах. Получим сейчас уточненные выражения веса тела и ускорения силы тяжести (см. § 12).

Сила, с которой тело притягивается к Земле, называется силой тяжести, Вес тела равен силе, с которой неподвижное относительно Земли и находящееся в пустоте тело давит на горизонтальную опору или растягивает пружину вследствие притяжения к Земле.

Таким образом, вес тела равен силе тяжести; поэтому мы зачастую будем пользоваться этими терминами как равнозначными.

Если бы Земля не имела суточного вращения, то вес тела равнялся бы силе тяготения тела к Земле, определяемой по формуле (15). Благодаря суточному вращению Земли (в котором участвуют и все земные тела) на тело лежащее на земной поверхности, кроме силы тяготения направленной по радиусу к центру О Земли, действует центробежная сила инерции направленная по линии продолжения радиуса от оси вращения Земли (рис. 19). Разложим на две составляющие: в направлении радиуса в направлении, перпендикулярном Составляющая уравновешивается силой трения тела о земную поверхность; составляющая

противодействует силе тяготения тела к Земле. Поэтому сила притяжения тела к Земле, т. е. вес тела, выразится разностью силы тяготения и составляющей центробежной силы инерции

где географическая широта местонахождения тела. Учитывая формулы (15) и (20), получим

где масса тела, масса Земли, рад/с - угловая скорость суточного вращения Земли. Но поэтому

Из формулы (21) следует, что вес тела зависит от широты места: уменьшается от полюса к экватору благодаря увеличению в этом направлении (см. § 13). На полюсе

Так как ускорение силы тяжести то

Следовательно, ускорение силы тяжести также уменьшается от полюса к экватору. Правда, это уменьшение столь мало (не превышает что во многих практических расчетах его не учитывают.

С помощью сил инерции можно просто объяснить так называемое состояние невесомости. Тело, подверженное этому состоянию, не оказывает давления на опоры, даже находясь в соприкосновении с ними; при этом тело не испытывает деформации.

Состояние невесомости наступает в случае, когда на тело действует только сила тяготения, т. е. когда тело свободно движется в поле тяготения.

Это имеет место, например, в искусственном спутнике Земли, выведенном на орбиту и свободно движущемся в поле земного тяготения, т. е. вращающемся вокруг Земли (см. § 19).

При вращательном движении возникает, как мы уже знаем, центробежная сила инерции. Так как центробежная сила инерции, действующая на каждую частицу тела, находящегося в спутнике (и самого спутника), равна по величине и противоположна по направлению силе тяготения, действующей на соответствующую частицу, то эти силы взаимно уравновешиваются. В результате тело не подвергается деформации и не оказывает давления на стенки спутника (и другие возможные опоры), т. е. оно оказывается невесомым.

Невесомыми становятся и тела, находящиеся в космическом корабле, свободно (с выключенными двигателями) перемещающемся по любой траектории в безвоздушном пространстве в поле тяготения. Разумеется, что вместе со всеми телами, находящимися в корабле, становится невесомым и космонавт.

Физиологическое ощущение невесомости у космонавта выражается в отсутствии привычных напряжений и нагрузок, которые обусловлены силой тяжести. Прекращается деформация внутренних органов, исчезает постоянное напряжение ряда скелетных мышц, нарушается деятельность вестибулярного аппарата (обеспечивающего чувство равновесия человека), пропадает чувство «верха» и «низа», осложняется осуществление некоторых естественных функций организма. Столь привычные действия, как, например, выливание воды из сосуда, тоже вызывают затруднения: воду теперь приходится буквально вытряхивать из сосуда.

Для устранения перечисленных и других трудностей при длительном пребывании человека в космосе на космической станции предполагается создавать искусственную «весомость». С этой целью станцию будут конструировать в виде большого вращающегося диска с рабочими помещениями, расположенными на его периферии. Возникающая при этом центробежная сила инерции будет выполнять роль недостававшей силы тяготения.

С вращением Земли вокруг своей оси связано еще одно немаловажное явление: отклонение тел, движущихся по земной поверхности, от первоначального направления. Пусть тело массой двигаясь прямолинейно в северном полушарии, например вдоль меридиана, переместилось с широты которой соответствует линейная скорость вращения на широту которой соответствует скорость (рис. 20). Сохраняя по инерции свою первоначальную скорость вращения тело будет иметь на широте большую скорость вращения, чем находящаяся под ним земная поверхность. Иначе говоря, на широте тело приобретает ускорение относительно земной поверхности, направленное вправо перпендикулярно к перемещению тела. В результате тело отклонится вправо от первоначального (меридионального) направления движения и его траектория (относительно земной поверхности) окажется криволинейной.

Наблюдатель, связанный с вращающейся Землей (и потому не замечающий ее вращения), объяснит данное явление действием на тело некоторой силы инерции, направленной вправо перпендикулярно к скорости перемещения тела и равной по величине так. Эта сила получила название кориолисовой силы, или силы Кориолиса.

Сила Кориолиса действует только на движущиеся (относительно Земли) тела. Будучи перпендикулярной к скорости движения тела, она изменяет только направление, но не величину этой скорости; в северном полушарии кориолисова сила направлена вправо, в южном полушарии - влево. Во избежание недоразумений подчеркиваем, что сила Кориолиса возникает при любом (а не только при меридиональном) направлении движения тел.

Величина силы Кориолиса пропорциональна скорости движения тела, его массе и угловой скорости суточного вращения Земли. Поскольку угловая скорость вращения Земли невелика, сила Кориолиса может принимать большие значения и вызывать существенные отклонения только у тел, движущихся с большой скоростью (например, у находящихся в полете межконтинентальных баллистических ракет).

Если движение тел на земной поверхности ограничено (в боковом направлении) какой-либо связью, то тело будет давить на эту связь с силой, равной кориолисовой. При длительном воздействии сила Кориолиса, несмотря на ее сравнительно малую величину, вызывает заметный эффект. Благодаря ей реки северного полушария подмывают правые берега (закон Бера), а воздушные течения приобретают правое вращение (по часовой стрелке). Действием силы Кориолиса обусловлен и повышенный износ правого рельса железнодорожных путей в северном полушарии.

Задача 6. К сухожилию длиной см и диаметром подвесили груз При этом оно удлинилось до см. Определить модуль упругости сухожилия.

Решение. Сухожилие подвергается деформации одностороннего растяжения, поэтому, согласно формуле (12),

где площадь поперечного сечения, величина удлинения сухожилия.

Задача 7. Найти силу тяги развиваемую мотором автомобиля, движущегося в гору с ускорением (рис. 21). Уклон горы равен на каждые пути, масса автомобиля коэффициент трения

Решение. Выразим вес автомобиля:

Разложим его на две составляющие (рис. 21): силу скатывающую автомобиль с горы (параллельно поверхности горы), и силу прижимающую его к поверхности горы, т. е. силу нормального давления (перпендикулярна к поверхности горы).

Мотор движущегося в гору автомобиля должен преодолевать скатывающую силу и силу трения кроме того, он должен обеспечить автомобилю ускорение а. Поэтому сила тяги

О том факте, что в Космосе наблюдается невесомость, сегодня знает, пожалуй, даже маленький ребенок. Такому широкому распространению данного факта послужили многочисленные фантастические фильмы про Космос. Однако в действительности, почему в Космосе невесомость, знают немногие, и сегодня мы постараемся дать объяснение данному явлению.

Ошибочные гипотезы

Большинство людей, услышав вопрос о происхождении невесомости, легко дадут на него ответ, сказав, что такое состояние испытывается в Космосе по той причине, что сила притяжения там не действует на тела. И это будет в корне неверный ответ, поскольку в Космосе сила притяжения действует, и именно она удерживает все космические тела на своих местах, включая Землю и Луну, Марс и Венеру, которые неизбежно вращаются вокруг нашего естественного светила – Солнца.

Услышав, что ответ неверный, люди наверняка достанут из рукава другой козырь – отсутствие атмосферы, полный вакуум, наблюдаемый в Космосе. Однако и этот ответ не будет верным.

Почему в Космосе невесомость

Дело в том, что та невесомость, которую испытывают на себе космонавты, находящиеся на МКС, возникает по причине целой совокупности всевозможных факторов.

Причиной тому является то, что МКС вращается вокруг Земли по орбите с огромной скоростью, превышающей 28 тысяч километров в час. Такая скорость влияет на тот факт, что астронавтами на станции перестает ощущаться Земное притяжение, и относительно корабля создается ощущение невесомости. Все это и приводит к тому, что космонавты начинают передвигаться по станции именно так, как мы это видим в фантастических фильмах.

Как симулируют невесомость на Земле

Интересно, что состояние невесомости можно искусственно воссоздать в пределах Земной атмосферы, чем, кстати, успешно занимаются специалисты из НАСА.

На балансе NASA присутствует такое летательное средство, как Vomit Comet. Это вполне обычный аэроплан, который используется для тренировки астронавтов. Именно он способен воссоздавать условия пребывания в состоянии невесомости.

Сам процесс воссоздания подобных условий выглядит следующим образом:

  1. Аэроплан резко набирает высоту, двигаясь по заранее запланированной параболической траектории.
  2. Достигая верхней точки условной параболы, аэроплан начинает резкое движение вниз.
  3. За счет резкого изменения траектории движения, а также устремления летательного аппарата вниз, все пребывающие на борту люди начинают находиться в условиях невесомости.
  4. Достигая определенной точки снижения, аэроплан выравнивает свою траекторию, и повторяет процедуру полета, либо же садится на поверхность Земли.