Размножение фораминифер. Фораминиферы Отряд фораминиферы

Фораминиферы - это саркодовые с тонкими, сложно разветвленными ложноножками или псевдоподиями . Тело фораминифер состоит из протоплазмы с одним или несколькими ядрами и заключено в раковину, сообщающуюся с внешней средой через особое отверстие - устье (рис. 2). Помимо устья в стенках раковины имеются отверстия - форамены , которые выполняют ту же функцию, что и устье. Протоплазма фораминифер состоит из наружного слоя - эктоплазмы и внутреннего слоя - эндоплазмы . Эндоплазма выполняет (выстилает) внутреннюю полость раковины.

Она отличается неоднородностью состава, содержит разные включения. Эктоплазма более однородна.

Ложноножки или псевдоподии представляют собой подвижные тонкие выросты эктоплазмы . Они являются органоидами захвата пищи, частично переваривания, извержения. Ложноножки выполняют также дыхательные функции. Длина псевдоподии может в 100 раз превышать толщину и в несколько раз диаметр клетки.

Передвижение фораминифер происходит путем растягивания и сокращения ложноножек. Питаются фораминиферы микроскопическими (водоросли, личинки, простейшие) организмами и детритом.

Строение скелета . Большинство фораминифер имеют раковину. Она может быть секреционной (органического и минерального состава) или агглютинированной (от лат. agglutinare - приклеивать).

Органическая раковина состоит из тектина. Она не сохраняется в ископаемом состоянии.

Агглютинированная, или «песчаная», раковина состоит из зерен кварца, спикул губок,раковин других фораминифер и иных материалов, сцементированных железистым, известковым и, реже, кремневым цементом.

Большинство фораминифер образуют секреционно-известковую раковину. Раковина выделяется протоплазмой.

Стенки раковины имеют различную структуру: зернистую, волокнистую, тонкослоистую. Часто на поверхности видны отверстия (форамены). Это отверстия поровых каналов. Стенка без поровых каналов выглядит фарфоровидной и называется непрободенной . Пористая (прободенная) стенка выглядит стекловидной.

У фузулинид стенка раковины достигает большой сложности и дифференцирована на несколько слоев.

Раковина у фораминифер однокамерная, двухкамерная или многокамерная и имеет разнообразную форму.

При непрерывном росте образуется однокамерная раковина в форме колбочки, шара или трубки.

Двухкамерная раковина состоит из овальной начальной камеры и второй длинной, трубчатой, отделенной от начальной перегородкой. Вторая камера прямая, спирально свернутая или разветвленная.

Многокамерная раковина развивается в результате прерывистого роста. При замедлении роста на раковине образуются перетяжки, отделяющие одну камеру от другой. Вновь образующиеся камеры внутри раковины отделяются перегородками или септами .

Септам на наружной поверхности раковины соответствуют септальные швы.

Наибольшего разнообразия формы достигают многокамерные раковины.

Различают несколько типов строения раковин фораминифер (рис. 3).

Типы строения раковин . Под типом строения раковины понимается закономерность в относительном пространственном расположении ее частей, с чем связана форма раковины.

Различают следующие типы: неправильный, одноосный, спиральный (спирально-плоскостной и спирально-конический), милиолиновый (рис.3).

Неправильный тип строения наиболее примитивный. Раковина лучистая, ветвистая, неправильно-клубковидная. У лучистых и ветвистых раковина обычно однокамерная, у неправильно-клубковидных -двухкамерная.

Вторая камера имеет вид завернутой трубки.

При одноосном типе строения камеры следуют друг за другом по прямой оси. Раковина однокамерная или многокамерная. Конец раковины, с которого начинается рост, называется проксимальным , противоположный конец раковины, на котором расположено устье, называется дистальным .

Одноосные раковины типичны для донных фораминифер. Они свободно лежат или ползают по дну. Иногда такие формы переходят к прикрепленному образу жизни и тогда раковина становится неправильной, стелющейся по субстрату.

Спирально-плоскостной тип характеризуется спиральной осью, лежащей в одной плоскости - плоскости симметрии. Поэтому раковины имеют двустороннюю симметрию. Воображаемая прямая линия, вокруг которой происходит навивание оборотов раковины, называется осью навивания или осью раковины . Она перпендикулярна спиральной оси и по ней измеряется толщина раковины.

Раковины могут быть двухкамерными и многокамерными. Первая камера - начальная, шарообразная, вторая - трубчатая, спирально завернутая (рис. 3).

Многокамерные раковины имеют разнообразную форму, которая зависит от соотношения диаметра и толщины.

Диаметр лежит в плоскости симметрии, он перпендикулярен оси навивания.

Если d > толщины и значительно, раковина имеет дисковидную или чечевицеобразную форму, если d » толщине раковина приобретает шаровидную форму, если толщина > d (значительно!), появляетсяверетеновидная форма.

В раковине различают обороты . Каждый оборот описывает полную окружность. Линии соприкосновения смежных оборотов называются спиральными швами . Если все обороты видны с боковой стороны, раковину называют эволютной (необъемлющей) - рис. 3, 4. У многих форм снаружи виден только последний оборот, который закрывает все предыдущие. Такая раковина называется инволютной (объемлющей). На многих раковинах наблюдается пупок - коническое углубление на каждом боку. У эволютных форм пупок широкий и более или менее глубокий, у инволютных - узкий. Иногда пупок заполнен веществом дополнительного скелета.

Спирально-конический тип строения отличается от спирально-плоскостного расположением спиральной оси не в одной плоскости, а по воображаемой спиральной поверхности. В этих раковинах (рис. 3, 4) различают высоту и диаметр. В зависимости от отношения высоты к диаметру спирально-конические раковины делятся на трохоидные и спирально-винтовые.

Трохоидные - соотношение высоты и диаметра различно, но высота не превышает диаметр.

У спирально-винтовых высота превышает диаметр. Раковины в основном многокамерные. В отдельных оборотах число камер бывает 2, 3, 4, 5, в зависимости от чего различают двухрядные, трехрядные, четырехрядные и пятирядные раковины. Отдельные камеры располагаются друг к другу под определенным углом. Спирально-конические раковины могут быть гетероморфными , т.е. трехрядная может перейти к двухрядному или другому типу строения.

У спирально-конических раковин сторону, на которой видны все обороты спирали называют дорзальной или спинной. Сторона, на которой видно меньше оборотов или один последний, называется вентральной или брюшной .

Правильно-клубковидный или милиолиновый тип строения - это обособленная группа спирально-плоскостных раковин. Камеры располагаются в нескольких взаимнопересекающихся плоскостях или в одной плоскости, образуя клубок.

Циклические раковины представляют собой разновидность спирально-плоскостных, встречаются сравнительно редко (нумулитиды). Камеры на ранних стадиях располагаются по спирали, а в дальнейшем - по концентрическим окружностям.

Дополнительный скелет представляет собой вторичные отложения скелетного вещества на наружной поверхности раковины или внутри нее. Наружный дополнительный скелет представлен ребрами, шипами, бугорками. Иногда это пупочные диски, выполняющие область пупка. Внутренние скелетные образования встречаются в отрядах фузулинид, эндотирид и нуммулитид.

Размножение. В процессе размножения фораминифер наблюдается чередование поколений - бесполого и полового. В основе того и другого процесса лежит деление клетки. У многокамерных фораминифер один и тот же вид производит 2 типа раковин: мегасферическую с большой начальной камерой и небольшим числом последующих камер и микросферическую с маленькой начальной камерой и многочисленными последующими камерами. Микросферическая раковина больше мегасферической. Она содержит много ядер, которые в беспорядке рассеяны в протоплазме. Мегасферическая особь имеет одно ядро. Она образуется в процессе полового, а микросферическая - в процессе бесполого размножения. Наличие двух типов раковин у одного вида называется диморфизмом .

Экология и тафономия фораминифер .

Современные фораминиферы составляют значительную часть планктона тропической и субтропической зон, за пределы которых они выносятся течениями. Заселяют они и дно сублиторали. Континентальные сублиторали фораминиферы обитают между песчинками грунта в заполненных водой капиллярных пространствах. Воды либо слабо соленые, либо пресные.

На развитие морских фораминифер влияет освещенность и пища (одноклеточные водоросли и некоторые бактерии).

Попадая в осадок после гибели животного раковины фораминифер привносят в него углекислый кальций, магний, оксиды железа и др. продукты жизнедеятельности.

В современных осадках тепловодных бассейнов бентосные фораминиферы немногочисленны и являются как бы примесью к основной части осадка.

В рифогенных отложениях современных морей фораминиферы относятся к породообразующим (наряду с кораллами, известковыми водорослями и др. организмами).

Меньшее значение имеют бентосные фораминиферы батиальной области. В абиссальной области на дне накапливаются агглютинировнные раковинки фораминифер (до 20 % осадка).

В геологическом прошлом фораминиферы неоднократно были породообразующими. Карбонатные породы среднего карбона на Русской платформе и на западном склоне Урала (Пермская область, Башкирия и Оренбургская область) почти нацело сложены раковинами фузулинид.

В позднем карбоне и ранней перми вдоль западного склона Урала в мелком теплом море формировались куполообразные рифы, в значительной части состоящие из фузулиновых и других органогенных известняков.

Породоообразующими были и бентосные фораминиферы поздней перми (Урал, Тянь-Шань, Памир) и всего мелового периода. Толщи мела состоят из раковинок бентосных и планктонных фораминифер. Велика породообразующая роль бентосных фораминифер (нуммулитид) в палеогеновых отложениях Европейской части России, Средней и Центральной Азии, Западной Европы.

Фораминиферы не являются животными, растениями или грибами. Они относятся к протистам — группе эукариотов (т. е. организмов, клетки которых имеют ядро), которые не относятся больше никуда. Такая вот странность.

Она была во‑от такая!

В сегодняшней действительности фораминиферы имеют типичный «одноклеточный» размер — очень небольшие доли миллиметра. А в далеком прошлом встречались виды, дораставшие до 20 см.


А где живут?

Это в основном морские существа, преимущественно населяющие либо тропические воды, либо полярные, причем в первом случае видовое разнообразие явно больше. Больше и само количество обитателей — в тропиках оно достигает 100 тыс. особей на кубометр воды, а средний показатель по Мировому океану — всего 10 штук на кубометр.


Всегда в воде?

На самом деле нет. Их находили в донных отложениях на глубине до 16 метров от уровня дна. Нет никаких причин думать, что они попали туда случайно, они там живут.


А в чем их «фишка»?

Фораминиферы всегда имеют наружный скелет — раковину. Она иногда имеет причудливую форму. Раковина может быть известковой (вспомним мел), хитиновой, как панцирь у насекомых, или «сборной» (по-научному, агглютинированной) — состоящей из посторонних частиц, склеенных выделениями самой клетки. Как несложно догадаться, наибольшие шансы на попадание в палеонтологическую «летопись» имеет первый тип, наименьшие — второй.


Мел сейчас

Меловые отложения, образованные раковинками фораминифер, образуются и сейчас. Это глобугериновые отложения, образованные, преимущественно раковинками фораминифер рода Globigerina.


А если бы у человека была такая раковина?

Человек — многоклеточное существо. Фораминифера — одноклеточное. В этом их принципиальное различие.

Класс Foraminifera включает в себя саркодовых, преимущественно морских, имеющих раковину с одним или несколькими отверстиями – устьями, через которые наружу выходят тонкие длинные нитевидные отростки цитоплазмы – псевдоподии. Основными функциями псевдоподий являются передвижение и сбор пищи (диатомовых водорослей, бактерий), также они принимают участие в газообмене и иногда в построении раковины.

Общая характеристика

Агглютинированная раковина фораминиферы Astrorhiza sp.

Размеры раковин фораминифер колеблются в значительных пределах от микроскопических (0,02-0,05 мм) до достаточно крупных (до 100 мм). Существует условное разделение фораминифер на крупные и мелкие: к первой группе относятся представители отрядов Fusulinida и Nummulitida, ко второй – все остальные. Крупные фораминиферы имеют гораздо более сложное строение.

Раковины фораминифер отличаются по способу образования, числу и расположению камер. По способу образования и составу выделяются раковины агглютинированные и секреционные. Секреционные раковины образуются эктоплазмой клетки и имеют у большинства форм известковый, а у меньшинства - органический состав. Агглютинированные раковины состоят из посторонних частиц: зерен кварца, кальцита, спикул губок и др., скрепленных цементом, который образуется эктоплазмой подобно тому, как отмечено для секреционных раковин. Имеются и более сложные варианты, когда секреционные известковые раковины содержат примеси агглютинированных частиц.

Секреционная раковина фораминиферы Quinqueloculina costata

По числу камер фораминиферы подразделяются на одно-, двух- и многокамерные. Однокамерные раковины могут быть округлые, звездчатые, цилиндрические и пр. Двухкамерные формы состоят из шарообразной первой камеры и различно устроенной второй: почти цилиндрической в одном случае и в виде длинной клубкообразной либо спиральной - в другом.

Многокамерные раковины различаются способом расположения камер. Камеры могут следовать одна за другой в один ряд, чаще они окружают первую камеру спирально или клубкообразно. В клубкообразном типе навивания наблюдается закономерное либо незакономерное расположение камер. Спиральнозавитые раковины подразделяются на спирально-плоскостные, спирально-конические и спирально-винтовые.

Спирально-плоскостные раковины различаются между собой формой поперечного сечения оборотов и степенью их перекрывания (объемлемости). Если обороты только соприкасаются и снаружи видны все обороты, то раковина называется эволютной . Если последний оборот полностью перекрывает предпоследний, то раковина называется инволютной . В этом случае снаружи виден только последний оборот, а их действительное число можно определить лишь на поперечном разрезе. При частичном перекрывании оборотов выделяются переходные варианты: полуинволютные и полуэволютные раковины. Внешне инволютные раковины выглядят как монетовидные, если диаметр раковины значительно больше толщины (Д >> Т), линзовидные (Д > Т), шаровидные (Д = Т) и веретеновидные (Д << Т)

Принципы классификации

При разделении фораминифер на отряды учитываются прежде всего следующие признаки: способ образования (секреционная или агглютинированная) и состав раковины (известковая, псевдохитиновая, возможно кремневая), число камер и характер их расположения, т.е. тип навивания. Помимо этих признаков рассматривается тип устья и строение стенки раковины. В классе выделяют от 13 до 52 отрядов.

Образ жизни

Современная планктонная фораминифера Globigerina falconensis

Современные фораминиферы в подавляющем большинстве обитают в нормально-морских бассейнах на всех глубинах и широтах, достигая максимального разнообразия в сублиторали тропических морей. Меньшая часть фораминифер существует в солоноватоводных бассейнах типа Черного и Азовского морей. Некоторые фораминиферы встречаются в пресных водоемах и еще реже в подземных водах пустынь, как, например, в Каракумах и Сахаре.

Большинство современных фораминифер передвигаются по дну с помощью псевдоподий, т.е. являются подвижным бентосом , меньшинство входит в группу неподвижного бентоса, прикрепленного или свободнолежащего. Часть фораминифер приспособилась к планктонному образу жизни: Globigerinida, видимо некоторые Fusulinida (шарообразная стадия Scwagerina ).

Геологическое значение и породообразующая роль

Нуммулитовый известняк

Среди фораминифер с агглютинированной раковиной породообразующее значение имеют представители отряда Astrorhizida, скопления которых формируют рабдамминовые пески и песчаники. Скопления секреционных известковых раковин фораминифер приводят к образованию различных известняков и мергелей, называемых по преобладающему роду или отряду: известняки фузулиновые, швагериновые, нуммулитовые, глобигериновые и т.п.

Фораминиферы являются одной из основных групп, используемых в биостратиграфии для создания зональных схем. Верхний палеозой подразделяется на фораминиферовые зоны на основании распределения фузулинид, мезокайнозой – на основании распределения секреционных известковых фораминифер других отрядов, среди которых важную роль имеют планктонные Globigerinida. Также по фораминиферам проводят палеобиогеографические реконструкции, восстанавливают палеоэкологические условия морских бассейнов, комплексы фораминифер используют как показатели глубины (батиметрических зон) и солености.

Ссылки и литература

  1. Михайлова И.А., Бондаренко О.Б. Палеонтология. Том 1. М.: Изд-во МГУ, 1997. 446 c. (djvu)

Фораминиферы, обитатели моря, устроены сложнее прочих корненожек. Число современных видов превышает 1000. Раковина фораминифер обнаруживает ряд этапов постепенного усложнения. В наиболее простых случаях раковина состоит из плотного органического вещества - псевдохитина ( рис. 8). Это вещество выделяется эктоплазмой. У других видов к этой тонкой пленке приклеиваются захваченные псевдоподиями посторонние частицы, главным образом песчинки. Получается хитиноидная основа, инкрустированная зернами кварца. Раковинки подобного типа массивны и тяжеловесны (например, роды Hyperammina, Rhabdammina, Astrorhiza, рис. 9). У большинства современных фораминифер раковина тоже тонкой хитиноидной основы, но пропитанная углекислым кальцием. Обладая большой прочностью, раковины такого рода отличаются гораздо большей легкостью, чем инкрустированные.

Форма раковины фораминифер чрезвычайно разнообразна ( рис. 9). У некоторых видов раковина имеет форму продолговатого мешка, у других вытягивается в трубку, у третьих эта трубка закручивается в спираль. Все это однокамерные формы ( рис. 9). Но у большинства фораминифер полость раковины поделена поперечными перегородками на камеры (многокамерные формы), которые сообщаются друг с другом отверстиями, имеющимися в перегородках. Взаимное расположение камер может быть различным ( рис. 9). Они могут располагаться в один ряд, в два ряда, спирально и т.п. Каждая многокамерная корненожка начинает свою жизнь будучи однокамерной, причем эта первая камера меньше позднейших и называется зародышевой. Отверстие, сообщающее раковину с внешним миром и служащее для выхода псевдоподий, называется устьем. Помимо устья у многих корненожек все стенки раковины пронизаны тончайшими порами, тоже служащими для выхода ложноножек.

Строение псевдоподий у Foraminifera, которые называются ризоподиями , чрезвычайно своеобразно. Они представляют собой длинные тонкие переплетающиеся и сливающиеся нити ( рис. 8), образующие вокруг раковинки сложную сеть. В ризоподиях осуществляется непрерывный ток цитоплазмы. По одной и той же ризоподии одни струи ее текут в центростремительном (к раковине), другие - в центробежном направлениях. Ризоподии служат для улавливания и, частично, переваривания пищи, а также для передвижения животного. Они способны сокращаться и вытягиваться.

Большинство Foraminifera живет на дне водоемов, иногда на глубинах в тысячи метров, питаясь разными мелкими организмами. Лишь немногие виды, например Globigerina, входят в состав планктона. Раковинки этих видов снабжены обычно длинными радиальными шипами, сильно увеличивающими поверхность и позволяющими "парить" в толще воды.

попарно. Так, Ф. Гарп (Harре, 1879) отметил, что у нуммулитов из одного и того же местонахождения встречаются такие «парные» виды, которые сходны между собой во всех морфологических признаках, за исключением лишь того, что у одного из них начальная камера очень мала, неразличима невооруженным глазом, а общие размеры и число оборотов относительно велики; у другого вида - партнера, наоборот, начальная камера крупная, хорошо заметна, общие размеры при этом меньше, и раковина образована сравнительно небольшим числом оборотов. Е. Мюнье-Шальма (MunierChalmas, 1880) указал на то, что мы в данном случае имеем дело не с самостоятельными видами, а с двумя различными формами одного вида с явлением диморфизма. Природу этого последнего Мюнье-Шальма объяснял возрастными отличиями.

В 1886г. Мюнье-Шальма и Шлюмберже (Sсh1umberger) предложили термины «микросфера» для маленькой начальной камеры одной из упомянутых форм и «мегалосфера» для крупной начальной камеры другой формы. В дальнейшем эти формы получили, соответственно, название микросферической, или формы В, и мегасферической (мегалосферической или макросферической) или формы А.

Истинная природа явления была выяснена работами Дж. Листера (Lister, 1894, 1895, 1903) и Ф. Шаудинна (Schaudinn, 1894, 1895, 1903). Эти исследователи установили, что у представителей рода Elphidium и некоторых других имеет место чередование поколений - полового и бесполого. Дальнейшие исследования Ф. Винтера (Winter, 1907), Е. Майерса (Myers, 1933, 1934, 1935, 1936, 1940 и 1943), Ле Кальве (Le Calvez, 1937, 1938, 1950, 1953), Джеппс (Jepps, 1942) и др. подтвердили выводы Листера и Шаудинна и значительно приблизили нас к познанию истинной природы процессов размножения у фораминифер.

Жизненный цикл фораминифер распадается на два основных этапа: шизогонию, или агамогонию - бесполое воспроизведение со стадией образования мерозоитов (эмбрионов) и заканчивающееся образованием гаплоидного поколения - мегасферических гамонтов; и гамогонию - половое воспроизведение, в конечном итоге которого восстанавливается диплоидное состояние - образуются микросферические шизонты; этот второй этап сопровождается образованием многочисленных половых элементов - гамет и попарным слиянием этих последних.

Гаметы фораминифер, образованные как одной материнской особью - гамонтом, так и разными, не отличаются ни по своим размерам, ни по строению, чем определяется наличие изогамии. У большинства фораминифер гаметы жгутиковые - так называемые флагеллоспоры, но у некоторых (Spirillina и Patellina) гаметы амёбоидные. В. А. Догель (1951) указывает, что строение гамет является важным указанием на характер предковых форм фораминифер: по его мнению, гаметы представляют исходную стадию онтогенеза фораминифер, которая отражает, как правило, в своем строении особенности жгутиковых предков фораминифер. Догель считает, что амёбоидные гаметы некоторых фораминифер являются ценогенетическим новообразованием, что утрата жгутиков произошла в процессе приспособительного изменения хода онтогенеза в течение филогенетического развития группы. Если отказаться от интерпретации Догеля и рассматривать особенности строения гамет как унаследованные от предков - палингенетические, то придется допустить полифилетическое происхождение фораминифер от двух корней - жгутикового и амёбного.

Жгутиковая гамета фораминифер - округло-овальное образование размерами 1,5-2 μ, реже до 5 μ, снабженное двумя жгутами, неравными, вопреки мнению Шаудинна, из которых один, более короткий, направлен назад. В протоплазме гаметы можно различить ядро и сильно преломляющее свет жировое включение. У некоторых фораминифер гаметы снабжены тремя жгутами.

Копулируют у фораминифер гаметы, образованные разными гамонтами; автогамии, .т. е. копуляции гамет, происшедших из одного и того же гамонта, не отмечалось. Слияние гамет происходит обычно в свободной воде, вне материнской раковины.

У многокамерных форм в результате слиянии гамет образуется шаровидная зигота, которая несколько разрастается и выделяет на своей поверхности оболочку первой камеры микросферической формы. Развивающаяся из зиготы особь шизонт у фораминифер - сохраняет одноядерное строение только на ранних стадиях своего развития; очень рано, еще задолго до начала характерного для него процесса бесполого размножения - шизогонии, он становится многоядерным путем последовательных делений ядра.

В дальнейшем, с достижением шизонтом более или менее определенных специфических размеров, его протоплазма разбивается на ряд участков соответственно числу ядер; каждый такой участок обособляется и превращается в одноядерного мерозоита. Образование мерозоитов может происходить внутри раковины материнского шизонта (Iridia, Nubecularia, Peneroplis, Planorbulina) или вне ее (Elphidium); в последнем случае протоплазматическое тело заблаговременно покидает раковину.

То обстоятельство, что у фораминифер наблюдается чередование поколений диплоидного и гаплоидного, т. е. то, что они являются диплога-плонгами, представляет большой интерес; подобной особенностью отличаются многие низшие растения, но у животных диплогаплоидия до сих пор не отмечалась.

В результате копуляции гамет, у Discorbis образуется амёбоидная зигота; ее ядро неоднократно делится, благодаря чему молодой шизонт уже при выходе из цисты размножения содержит 8-16 ядер. В этом отличие от образующихся при шизогонии мерозоитов, которые остаются длительное время одноядерными. У Discorbis дифференцировка на микро- и мегасферические раковины сказываются не в величине их начальной камеры, а в общих размерах и направлении навивания спирали.

Гаметы Spirillina vivipara представляют собою амёбоидные образования размером около 10 μ. В результате попарного слияния гамет образуются амёбоидные зиготы; при этом происходит слияние пронуклеусов - ядер гамет.

У Patellina corrugata Wil1iamson и различных видов рода Discorbis образование зародышей также происходит вне раковины, так как от этой последней остается только крышечка, прикрывающая комочек протоплазмы, в котором происходит образование мерозоитов; перегородки между камерами раковины - сеты, а также ее брюшная стенка растворяются незадолго до начала шизогонии. Иногда перед этим процессом фораминифера окружается цистой, внутри которой и происходит размножение.

Вышедший из материнской раковины или обособившийся от материнской протоплазмы зародыш - мерозоит является, по сути дела, молодым организмом, обладающим всеми основными особенностями взрослого; он состоит из протоплазмы, дифференцированной на эндо- и эктоплазму, и снабжен ядрами, имеет раковину, может самостоятельно передвигаться и питаться при помощи псевдоподий. Поскольку процессы созревания ядра (Le Calvez, 1953) протекают в конце шизогонии, мерозоит гаплоидеи. Подобное состояние сохраняется и во времени дальнейшего роста зародыша, когда он постепенно превращается в гамонта.

Le Calvez (1953) различает гамогонию двух типов: моногамную и пластогамную. В первом случае (рис) образование гамет происходит в изолированных гамонтах, во втором (рис) - до образования гамет - два гамонта или более объединяются в общий так называемый сизигий. При моногамной гамогонии не все ядерное вещество используется при образовании гамет, а лишь небольшая его часть - «микронуклеусы», тогда как остальная погибает. Наоборот, у пластогамных форм при образовании гамет используется все ядерное вещество.

К моногамным видам Le Calvez (1953) относит Elphidium crispum (Linne) (рис), Peneroplis pertusus (Forscal,) Myxotheca arenilega (Schaudinn), 1ridia lucida Le Calvez (рис) и Planorbulina mediterranensis Orbigny.

В результате многократных делений «микронуклеусов» гамонт делается многоядерным. Отдельные ядра становятся центрами образования так называемых жгутиковых гаметоцитов, в результате деления которых надвое по типу обычного продольного деления жгутиконосцев получаются половые элементы - гаметы. Образование гамет происходит всегда внутри материнской раковины, которую в известный момент гаметы покидают в виде роя, через устье; этот процесс происходит обычно ночью. Гаметы известны для целого ряда моногамных видов фораминифер.

К числу пластогамных видов относятся Spirillina vivipara Ehrenberg, Patellina corrugata Williamson, а также Discorbis patelliformis Brady, D. pulvinata Brady и др., относимые обычно к Discorbis s. str., но отличающиеся некоторыми особенностями строения раковины и заслуживающие, возможно, выделения в особый род, для которого Гофкер (1951) предложил особое название Conorbella.

Шаудинн (1895), открывший пластогамию, не связывал ее с половым размножением. Эту связь установил Майерс (1933, 1935, 1936 и 1940); в дальнейшем она была подтверждена исследованиями Ле Кальве (1938) и др.

Для явлений пластогамии у Discorbis (рис) характерно слияние плазмы двух особей в единый - общий сизигий; при этом происходит прочное объединение раковин партнеров. Половые процессы начинаются с взаимной химической активизации, затем осуществляется переход всего ядерного вещества в образующиеся гаметы, отличающиеся относительно крупными размерами и наличием трех жгутов. При образовании сизигия эктоплазма партнеров растворяет брюшную стенку раковины, а также септы. В результате ряда последовательных делений ядра и обособления участков протоплазмы, вокруг конечных продуктов этого деления образуются гаметоциты. Эти последние делятся, по крайней мере, еще раз, образуя упомянутые трехжгутиковые гаметы, остаюшиеся внутри полости, образованной двумя слившимися партнерами, и здесь копулируют попарно.

У Spirillina vivipara Ehrenberg (рис) явления, происходящие при гамогонии, отличаются от того, что наблюдается у Discorbis, во-первых, меньшим количеством гамогонических делений ядра, а во-вторых, амёбоидным характером гамет. Гамонт у Spirillina vivipara существует самостоятельно недолго; вскоре две особи сближаются, сливаются псевдоподиями, после чего окружаются общей цистой. Ядро каждого гамонта делится два, реже три раза подряд; четырехядерные плазмодии партнеров вытекают под свои раковины в полость общей цисты, где каждый плазмодий делится на четыре одноядерных образования, представляющих собою гаметоциты. В результате однократного деления гаметоцитов образуются амёбоидные гаметы, числом восемь из каждого гамонта.

Сходно, по данным Майерса (1933, 1934), протекает жизненный цикл Patellina corrugata Williamson.

В некоторых случаях чередование поколений у фораминифер осложняется за счет того, что между двумя поколениями гамонтов вклинивается не одно, а два поколения шизонтов. Цикл развития протекает не по типу: А-В-А-В-А... (где А - гамонты, а В - шизонты), а по типу: A 1 -А 2 -B-A 1 -А 2 -В-A 1 -А 2 ... (где А 2 представляют собою шизонтов же, но второго поколения). Деления созревания падают в данном случае на конец существования поколения А 2 . Такие случаи приводят к триморфизму раковин, описанному Гофкером (Hofker, 1930).

Ле Кальве (1953) предполагает, что образован не поколения А 2 носит скорее случайный характер и происходит благодаря тому, что при шизогонии некоторый процент мерозоитов образуется без предшествующих делений созревания, т. е. остается диплоидным; такие мерозоиты не могут превратиться в гамонтов (последние, по мнению Ле Кальве, должны быть обязательно гаплоидными) и «повторно» становятся шизонтами.

Наличие закономерной смены трех поколений у некоторых, по крайней мере, форм подтверждается наблюдениями Гофкера (1930) над Streblus beccarii (Linne) var. flevensis Hofker.

Гофкеру удалось показать, что различные генерации Streblus beccarii var. flevensis приурочены к различным временам года. Жизненный цикл этой разновидности является годичным, а отдельные его стадии - сезонными. Зимой и весной встречаются исключительно представители поколения В, т. е. шизонты; зимой они молодые - их раковины образованы двумя-тремя оборотами, а весной, в мае, попадаются уже взрослые особи. Начиная с мая появляются мегасферические особи поколения А 1 , с июля - А 2 . В ноябре удается обнаружить впервые молодь поколения В. В связи с размножением путем шизогонии. В мае и июне отмечается инцистирование форм В. В июле, в связи со второй шизогонией, сопровождающейся делениями созревания, инцистируются формы А 1 . Формы А 2 (гамонты) инцистируются в конце августа - начале сентября, когда имеет место гамогония.

У Spiroplectammina sagittula (Defrance) форма В отличается двухрядным спирально-винтовым текстуляроидным строением как раннего отдела раковины, так и последующих; она однотипна по своему строению - мономорфна. Формы А 1 и А 2 биморфны - сочетают в себе два типа строения, отличаются от микросферической наличием начального отдела, имеющего спиральноплоскостное строение.

Чаще наиболее резко гетероморфное (би- или триморфное) строение раковины бывает выражено у микросферических форм, что особенно хорошо можно видеть на примере различных милиолид (рис). У Bigenerina nodosaria Orbigny биморфное строение выражено в обеих генерациях. Форма А отличается более крупной начальной камерой, меньшими размерами, меньшим общим числом камер и значительно меньшим развитием начального двухрядного, текстуляроидного отдела (рис).