Сфера и порядок применения результатов корреляционного анализа. Курсовая работа: Корреляционный анализ

В статье рассматриваются определения корреляции,корреляционного анализа и коэффициента корреляции. Дается определение корреляционной связи и ее основных характеристик.

  • Корреляционно-регрессионный анализ в исследовании факторов рождаемости
  • Оценка факторов рождаемости в Республике Башкортостан

Исследователей нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, такая связь может наблюдаться между погрешностью аппаратной обработки экспериментальных данных и величиной скачков сетевого напряжения. Другим примером может служить связь между пропускной способностью канала передачи данных и соотношением сигнал/шум.

В 1886 году английский естествоиспытатель Френсис Гальтон для обозначения характера подобного рода взаимодействий ввёл термин «корреляция». Позже его ученик Карл Пирсон разработал математическую формулу, позволяющую дать количественную оценку корреляционным связям признаков.

Зависимости между величинами (факторами, признаками) разделяют на два вида: функциональную и статистическую.

При функциональных зависимостях каждому значению одной переменной величины соответствует определенное значение другой переменной. Кроме того, функциональная связь двух факторов возможна только при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. В случае зависимости величины от множества факторов, функциональная связь возможна, если первая величина не зависит ни от каких других факторов, кроме входящих в указанное множество.

При статистической зависимости изменение одной из величин влечёт изменение распределения других величин, которые с определенными вероятностями принимают некоторые значения.

Значительно больший интерес представляет другой частный случай статистической зависимости, когда существует взаимосвязь значений одних случайных величин со средним значением других, при той особенности, что в каждом отдельном случае любая из взаимосвязанных величин может принимать различные значения.

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией.

Корреляционный анализ - метод, позволяющий обнаружить зависимость между несколькими случайными величинами.

Корреляционный анализ решает две основные задачи:

  • Первая задача заключается в определении формы связи, т.е. в установлении математической формы, в которой выражается данная связь. Это очень важно, так как от правильного выбора формы связи зависит конечный результат изучения взаимосвязи между признаками.
  • Вторая задача состоит в измерении тесноты, т.е. меры связи между признаками с целью установить степень влияния данного фактора на результат. Она решается математически путем определения параметров корреляционного уравнения.

Затем проводятся оценка и анализ полученных результатов при помощи специальных показателей корреляционного метода (коэффициентов детерминации, линейной и множественной корреляции и т.д.), а также проверка существенности связи между изучаемыми признаками.

Методами корреляционного анализа решаются следующие задачи:

  1. Взаимосвязь. Есть ли взаимосвязь между параметрами?
  2. Прогнозирование. Если известно поведение одного параметра, то можно предсказать поведение другого параметра, коррелирующего с первым.
  3. Классификация и идентификация объектов. Корреляционный анализ помогает подобрать набор независимых признаков для классификации.

Корреляция - статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). Суть ее заключается в том, что при изменении значения одной переменной происходит закономерное изменение (уменьшению или увеличению) другой переменной.

Для определения наличия взаимосвязи между двумя свойствами используется коэффициент корреляции.

Коэффициент корреляции р для генеральной совокупности, как правило, неизвестен, поэтому он оценивается по экспериментальным данным, представляющим собой выборку объема n пар значений (x i , y i), полученную при совместном измерении двух признаков Х и Y. Коэффициент корреляции, определяемый по выборочным данным, называется выборочным коэффициентом корреляции (или просто коэффициентом корреляции). Его принято обозначать символом r.

К основным свойствам коэффициента корреляции относятся:

  1. Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи.
  2. Значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от -1 до +1, т.е. -1 < r < 1.
  3. При независимом варьировании признаков, когда связь между ними отсутствует, r = 0 .
  4. При положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный (+) знак и находится в пределах от 0 до +1, т.е. 0 < r < 1.
  5. При отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным (–) знаком и находится в пределах от 0 до –1, т.е. -1 < r <0.
  6. Чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к ô1ô. Если r = ± 1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y.
  7. Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы k = n –2, где: n – число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции.

Рассчитывается коэффициент корреляции по следующей формуле:

где x - значение факторного признака; y - значение результативного признака; n - число пар данных.

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения x i ,y i двух признаков x,y. Если экспериментальных данных сравнительно немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений x i ,y i . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал, то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x и y графически в виде геометрического места точек в системе прямоугольных координат. Эта графическая зависимость называется диаграммой рассеивания или корреляционным полем.

Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров:

  • математических ожиданий E[x], E[y] величин x,y;
  • стандартных отклонений px, py случайных величин x,y ;
  • коэффициента корреляции p , который является мерой связи между случайными величинами, х и у. Приведем примеры корреляционных полей.

Если р = 0, то значения x i ,y i , полученные из двумерной нормальной совокупности, располагаются на графике в пределах области, ограниченной окружностью. В этом случае между случайными величинами x и y отсутствует корреляция, и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин x и y.

Если р = 1 или р = -1, то говорят о полной корреляции, то есть между случайными величинами x и y существует линейная функциональная зависимость.

При р = 1 значения x i ,y i определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением x i значения y i также увеличиваются).

В промежуточных случаях, когда -1< p <1, определяемые значениями x i ,y i точки попадают в область, ограниченную некоторым эллипсом, причём при p>0 имеет место положительная корреляция (с увеличением x значения y в целом имеют тенденцию к возрастанию), при p<0 корреляция отрицательная. Чем ближе p к ±1, тем уже эллипс и тем теснее точки, определяемые экспериментальными значениями, группируются около прямой линии.

Здесь же следует обратить внимание на то, что линия, вдоль которой группируются точки, может быть не только прямой, а иметь любую другую форму: парабола, гипербола и т. д. В этих случаях рассматривают нелинейную корреляцию.

Корреляционную зависимость между признаками можно описывать разными способами, в частности, любая форма связи может быть выражена уравнением общего вида y=f(x), где признак y – зависимая переменная, или функция от независимой переменной x, называемой аргументом.

Таким образом, визуальный анализ корреляционного поля помогает определить не только наличие статистической связи (линейной или нелинейной) между исследуемыми признаками, но и ее тесноту и форму.

При изучении корреляционной связи важным направлением анализа является оценка степени тесноты связи. Понятие степени тесноты связи между двумя признаками возникает вследствие того, что в действительности на изменение результативного признака влияет множество факторов. При этом влияние одного из факторов может выражаться более заметно и четко, чем влияние других факторов. С изменением условий роль решающего фактора может перейти к другому признаку.

При статистическом изучении взаимосвязей, как правило, учитываются только основные факторы. Также с учетом степени тесноты связи оценивается необходимость более подробного изучения конкретной данной связи и значение практического ее использования.

В общем, знание количественной оценки тесноты корреляционной связи позволяет решить следующую группу вопросов:

  • необходимость глубокого изучения данной связи между признаками и целесообразность ее практического применения;
  • степень различий в проявлении связи в конкретных условиях (сопоставление оценки тесноты связи для различных условий);
  • выявление главных и второстепенных факторов в данных конкретных условиях путём последовательного рассмотрения и сравнения признака с различными факторами.

Показатели тесноты связи должны удовлетворять ряду основных требований:

  • величина показателя тесноты связи должна быть равна или близка к нулю, если связь между изучаемыми признаками (процессами, явлениями) отсутствует;
  • при наличии между изучаемыми признаками функциональной связи величина показателя тесноты связи должна быть равна единице;
  • при наличии между признаками корреляционной связи абсолютное значение показателя тесноты связи должно выражаться правильной дробью, которая по величине тем больше, чем теснее связь между изучаемыми признаками (стремится к единице).

Корреляционная зависимость определяется различными параметрами, среди которых наибольшее распространение получили парные показатели, характеризующие взаимосвязь двух случайных величин: коэффициент ковариации (корреляционный момент) и линейный коэффициент корреляции (коэффициент корреляции Пирсона).

Сила связи определяется абсолютным значением показателя тесноты связи и не зависит от направления связи.

В зависимости от абсолютного значения коэффициента корреляции p корреляционные связи между признаками по силе делятся следующим образом:

  • сильная, или тесная (при p >0,70);
  • средняя (при 0,50< p <0,69);
  • умеренная (при 0,30< p <0,49);
  • слабая (при 0,20< p <0,29);
  • очень слабая (при p <0,19).

По форме корреляционная связь может быть линейной или нелинейной.

Линейной может быть, например, связь между уровнем подготовки студента и оценками итоговой аттестации. Пример нелинейной связи - уровень мотивации и эффективность выполнения поставленной задачи. (При повышении мотивации эффективность выполнения задачи сначала возрастает, затем, при определённом уровне мотивации, достигается максимальная эффективность; но дальнейшему повышению мотивации сопутствует уже снижение эффективности.)

По направлению корреляционная связь может быть положительной (прямой) и отрицательной (обратной).

При положительной линейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - более низкие значения другого. При отрицательной корреляции соотношения обратные.

Знак коэффициента корреляции зависит от направления корреляционной связи: при положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции - отрицательный знак.

Список литературы

  1. Аблеева, А. М. Формирование фонда оценочных средств в условиях ФГОС [Текст] / А. М. Аблеева, Г. А. Салимова // Актуальные проблемы преподавания социально-гуманитарных, естественно - научных и технических дисциплин в условиях модернизации высшей школы: материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. - Уфа, 2014. - С. 11-14.
  2. Ганиева, А.М. Статистический анализ занятости и безработицы [Текст] / А.М. Ганиева, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 315-316.
  3. Исмагилов, Р. Р. Творческая группа - эффективная форма организации научных исследований в высшей школе [Текст] / Р. Р. Исмагилов, М. Х. Уразлин, Д. Р. Исламгулов // Научно-технический и научно-образовательный комплексы региона: проблемы и перспективы развития: материалы научно-практической конференции / Академия наук РБ, УГАТУ. - Уфа, 1999. - С. 105-106.
  4. Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования [Текст] / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 62-69.
  5. Исламгулов, Д. Р. Научно-исследовательская работа студентов - важнейший элемент подготовки специалистов в аграрном вузе [Текст] / Д. Р. Исламгулов // Проблемы практической подготовки студентов в вузе на современном этапе и пути их решения: сб. материалов науч.-метод. конф., 24 апреля 2007 года / Башкирский ГАУ. - Уфа, 2007. - С. 20-22.
  6. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова// БЪДЕЩИТЕ ИЗСЛЕДОВАНИЯ – 2016: Материали за XII Международна научна практична конференция, 15-22 февруари 2016. – София: Бял ГРАД-БГ ООД, 2016. – Том 4 Педагогически науки. – C. 80-85.
  7. Лубова, Т.Н. Новые образовательные стандарты: особенности реализации [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 79-84.
  8. Лубова, Т.Н. Организация самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Реализация образовательных программ высшего образования в рамках ФГОС ВО: материалы Всероссийской научно-методической конференции в рамках выездного совещания НМС по природообустройству и водопользованию Федерального УМО в системе ВО. / Башкирский ГАУ. - Уфа, 2016. - С. 214-219.
  9. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта – компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. – 2015. – Т. 7. - № 1. – С. 85-93.
  10. Саубанова, Л.М. Уровень демографической нагрузки [Текст] / Л.М. Саубанова, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 321-322.
  11. Фахруллина, А.Р. Статистический анализ инфляции в России [Текст] / А.Р. Фахруллина, Т.Н. Лубова // Актуальные вопросы экономико-статистического исследования и информационных технологий: сб. науч. ст.: посвящается к 40-летию создания кафедры "Статистики и информационных систем в экономике" / Башкирский ГАУ. - Уфа, 2011. - С. 323-324.
  12. Фархутдинова, А.Т. Рынок труда в Республике Башкортостан в 2012 году [Электронный ресурс] / А.Т. Фархутдинова, Т.Н. Лубова // Студенческий научный форум. Материалы V Международной студенческой электронной научной конференции: электронная научная конференция (электронный сборник). Российская академия естествознания. 2013.

КУРСОВАЯ РАБОТА

Тема: Корреляционный анализ

Введение

1. Корреляционный анализ

1.1 Понятие корреляционной связи

1.2 Общая классификация корреляционных связей

1.3 Корреляционные поля и цель их построения

1.4 Этапы корреляционного анализа

1.5 Коэффициенты корреляции

1.6 Нормированный коэффициент корреляции Браве-Пирсона

1.7 Коэффициент ранговой корреляции Спирмена

1.8 Основные свойства коэффициентов корреляции

1.9 Проверка значимости коэффициентов корреляции

1.10 Критические значения коэффициента парной корреляции

2. Планирование многофакторного эксперимента

2.1 Условие задачи

2.2 Определение центр плана (основной уровень) и уровня варьирования факторов

2.3 Построение матрицы планирования

2.4 Проверка однородности дисперсии и равноточности измерения в разных сериях

2.5 Коэффициенты уравнения регрессии

2.6 Дисперсия воспроизводимости

2.7 Проверка значимости коэффициентов уравнения регрессии

2.8 Проверка адекватности уравнения регрессии

Заключение

Список литературы

ВВЕДЕНИЕ

Планирование эксперимента -математико-статистическая дисциплина, изучающая методы рациональной организации экспериментальных исследований - от оптимального выбора исследуемых факторов и определения собственно плана эксперимента в соответствии с его целью до методов анализа результатов. Начало планирования эксперимента положили труды английского статистика Р.Фишера (1935), подчеркнувшего, что рациональное планирование экспериментадаёт не менее существенный выигрыш в точности оценок, чем оптимальная обработка результатов измерений. В 60-х годах 20 века сложилась современная теория планирования эксперимента. Её методы тесно связаны с теорией приближения функций и математическим программированием. Построены оптимальные планы и исследованы их свойства для широкого класса моделей.

Планирование эксперимента – выбор плана эксперимента, удовлетворяющего заданным требованиям, совокупность действий направленных на разработку стратегии экспериментирования (от получения априорной информации до получения работоспособной математической модели или определения оптимальных условий). Это целенаправленное управление экспериментом, реализуемое в условиях неполного знания механизма изучаемого явления.

В процессе измерений, последующей обработки данных, а также формализации результатов в виде математической модели, возникают погрешности и теряется часть информации, содержащейся в исходных данных. Применение методов планирования эксперимента позволяет определить погрешность математической модели и судить о ее адекватности. Если точность модели оказывается недостаточной, то применение методов планирования эксперимента позволяет модернизировать математическую модель с проведением дополнительных опытов без потери предыдущей информации и с минимальными затратами.

Цель планирования эксперимента – нахождение таких условий и правил проведения опытов при которых удается получить надежную и достоверную информацию об объекте с наименьшей затратой труда, а также представить эту информацию в компактной и удобной форме с количественной оценкой точности.

Среди основных методов планирования, применяемых на разных этапах исследования, используют:

Планирование отсеивающего эксперимента, основное значение которого выделение из всей совокупности факторов группы существенных факторов, подлежащих дальнейшему детальному изучению;

Планирование эксперимента для дисперсионного анализа, т.е. составление планов для объектов с качественными факторами;

Планирование регрессионного эксперимента, позволяющего получать регрессионные модели (полиномиальные и иные);

Планирование экстремального эксперимента, в котором главная задача – экспериментальная оптимизация объекта исследования;

Планирование при изучении динамических процессов и т.д.

Целью изучения дисциплины является подготовка студентов к производственно-технической деятельности по специальности с применением методов теории планирования и современных информационных технологий.

Задачи дисциплины: изучение современных методов планирования, организации и оптимизации научного и промышленного эксперимента, проведения экспериментов и обработки полученных результатов.

1. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ

1.1 Понятие корреляционной связи

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, может ли рост влиять на вес человека или может ли давление влиять на качество продукции?

Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь - это согласованное изменение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью другого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем больше рост, тем больше вес человека. Однако из этого правила имеются исключения, когда относительно низкие люди имеют избыточный вес, и, наоборот, астеники, при высоком росте имеют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи - это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статистики. Оба термина - корреляционная связь и корреляционная зависимость - часто используются как синонимы. Зависимость подразумевает влияние, связь - любые согласованные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимость - это изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака.

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Корреляционные связи различаютсяпо форме, направлению и степени (силе).

По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи (рисунок 1). При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности.

Рисунок 1 - Связь между эффективностью решения задачи и силой мотивационной тенденции

По направлению корреляционная связь может быть положительной ("прямой") и отрицательной ("обратной"). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака - низкие значения другого (рисунок 2). При отрицательной корреляции соотношения обратные (рисунок 3). При положительной корреляции коэффициент корреляции имеет положительный знак, при отрицательной корреляции - отрицательный знак.

Рисунок 2 – Прямая корреляция

Рисунок 3 – Обратная корреляция


Рисунок 4 – Отсутствие корреляции

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции. Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

1.2 Общая классификация корреляционных связей

В зависимости от коэффициента корреляции различают следующие корреляционные связи:

Сильная, или тесная при коэффициенте корреляции r>0,70;

Средняя (при 0,50

Умеренная (при 0,30

Слабая (при 0,20

Очень слабая (при r<0,19).

1.3 Корреляционные поля и цель их построения

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения (x i , y i) двух признаков. Если экспериментальных данных немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений x i и y i . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Корреляционный анализ, как и другие статистические методы, основан на использовании вероятностных моделей, описывающих поведение исследуемых признаков в некоторой генеральной совокупности, из которой получены экспериментальные значения x i и y i . Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал (метры, секунды, килограммы и т.д.), то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x i и y i графически в виде геометрического места точек в системе прямоугольных координат. Эту графическую зависимость называются также диаграммой рассеивания или корреляционным полем.
Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров: μ x , μ y – средние значения (математические ожидания); σ x ,σ y – стандартные отклонения случайных величин Х и Y и р – коэффициент корреляции, который является мерой связи между случайными величинами Х и Y.
Если р = 0, то значения, x i , y i , полученные из двумерной нормальной совокупности, располагаются на графике в координатах х, у в пределах области, ограниченной окружностью (рисунок 5, а). В этом случае между случайными величинами Х и Y отсутствует корреляция и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин Х и Y.


Рисунок 5 - Графическая интерпретация взаимосвязи между показателями

Если р = 1 или р = -1, то между случайными величинами Х и Y существует линейная функциональная зависимость (Y = c + dX). В этом случае говорят о полной корреляции. При р = 1 значения x i , y i определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением x i значения y i также увеличиваются), при р = -1 прямая имеет отрицательный наклон (рисунок 5, б). В промежуточных случаях (-1 < p < 1) точки, соответствующие значениям xi , y i , попадают в область, ограниченную некоторым эллипсом (рисунок 5, в, г), причем при p > 0 имеет место положительная корреляция (с увеличением x i значения y i имеют тенденцию к возрастанию), при p < 0 корреляция отрицательная. Чем ближе р к , тем уже эллипс и тем теснее экспериментальные значения группируются около прямой линии. Здесь же следует обратить внимание на то, что линия, вдоль которой группируются точки, может быть не только прямой, а иметь любую другую форму: парабола, гипербола и т. д. В этих случаях мы рассматривали бы так называемую, нелинейную (или криволинейную) корреляцию (риунок 5, д).

Таким образом, визуальный анализ корреляционного поля помогает выявить не только наличия статистической зависимости (линейную или нелинейную) между исследуемыми признаками, но и ее тесноту и форму. Это имеет существенное значение для следующего шага в анализе ѕ выбора и вычисления соответствующего коэффициента корреляции.

Корреляционную зависимость между признаками можно описывать разными способами. В частности, любая форма связи может быть выражена уравнением общего вида Y = f(X), где признак Y – зависимая переменная, или функция от независимой переменной X, называемой аргументом. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

1.4 Этапы корреляционного анализа

Практическая реализация корреляционного анализа включает следующие этапы:

а) постановка задачи и выбор признаков;

б) сбор информации и ее первичная обработка (группировки, исключение аномальных наблюдений, проверка нормальности одномерного распределения);

в) предварительная характеристика взаимосвязей (аналитические группировки, графики);

г) устранение мультиколлинеарности (взаимозависимости факторов) и уточнение набора показателей путем расчета парных коэффициентов корреляции;

д) исследование факторной зависимости и проверка ее значимости;

е) оценка результатов анализа и подготовка рекомендаций по их практическому использованию.

1.5 Коэффициенты корреляции

Коэффициенты корреляции является общепринятой в математической статистике характеристикой связи между двумя случайными величинами. Коэффициент корреляции - показатель степени взаимозависимости, статистической связи двух переменных; изменяется в пределах от -1 до +1. Значение коэффициента корреляции 0 указывает на возможное отсутствие зависимости, значение +1 свидетельствует о согласованности переменных.

Различают следующие коэффициенты корреляции:

Дихотомический - показатель связи признаков (переменных) измеряемых по дихотомическим шкалам наименований;

Пирсона (Pearson product-moment correlation) - коэффициент корреляции, используемый для континуальных переменных;

Ранговой корреляции Спирмена (Spearmen"s rank-order correlation) - коэффициент корреляции для переменных, измеренных в порядковых (ранговых) шкалах;

Точечно-бисериальной корреляции (point-biserial correlation) - коэффициент корреляции, применяемый в случае анализа отношения переменных, одна из которых измерена в континуальной шкале, а другая - в строго дихотомической шкале наименований;

J - коэффициент корреляции, используемый в случае, если обе переменные измерены в дихотомической шкале наименований.

Тетрахорический (четырехпольный) (tetrachoric) - коэффициент корреляции, используемый в случае, если обе переменные измерены в континуальных шкалах.

Линейная связь между переменными X i и X j оценивается коэффициентом корреляции:

,


где X i и X j – исследуемые переменные; mX i и mX j – математические ожидания переменных; σ X и σ X – дисперсии переменных.

Выборочный коэффициент корреляции определяют по формуле:

,

или по преобразованной формуле:

,

где i =1, 2, ..., n, j = 1, 2, ..., m, u = 1, 2, ..., N; N – число опытов(объем выборки); x i , x j – оценки математических ожиданий; S Xi , S Xj – оценки среднеквадратических отклонений.

Только при совместной нормальной распределенности исследуемых случайных величин X i и X j коэффициент корреляции имеет определенный смысл связи между переменными. В противном случае коэффициент корреляции может только косвенно характеризовать эту связь.

1.6 Нормированный коэффициент корреляции Браве-Пирсона

В качестве оценки генерального коэффициента корреляции р используется коэффициент корреляции r Браве-Пирсона. Для его определения принимается предположение о двумерном нормальном распределении генеральной совокупности, из которой получены экспериментальные данные. Это предположение может быть проверено с помощью соответствующих критериев значимости. Следует отметить, что если по отдельности одномерные эмпирические распределения значений x i и y i согласуются с нормальным распределением, то из этого еще не следует, что двумерное распределение будет нормальным. Для такого заключения необходимо еще проверить предположение о линейности связи между случайными величинами Х и Y. Строго говоря, для вычисления коэффициента корреляции достаточно только принять предположение о линейности связи между случайными величинами, и вычисленный коэффициент корреляции будет мерой этой линейной связи.
Коэффициент корреляции Браве–Пирсона () относится к параметрическим коэффициентам и для практических расчетов вычисляется по формуле:

Из формулы видно, что для вычисления необходимо найти средние значения признаков Х и Y, а также отклонения каждого статистического данного от его среднего . Зная эти значения, находятся суммы . Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным для f = n –2. Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь.

Пример 1.10 студентам были даны тесты на наглядно-образное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Исследователя интересует вопрос: существует ли взаимосвязь между временем решения этих задач? Переменная X - обозначает среднее время решения наглядно-образных, а переменная Y- среднее время решения вербальных заданий тестов.

Решение. Представим исходные данные в виде таблицы 4, в которой введены дополнительные столбцы, необходимые для расчета по формуле.

Таблица 1 – Условия задачи

№ испытуемых x y х i - (х i -) 2 y i - (y i - ) 2
1 19 17 -16,7 278,89 -7,2 51,84 120,24
2 32 7 -3,7 13,69 -17,2 295,84 63,64
3 33 17 -2,7 7,29 -7,2 51,84 19,44
4 44 28 8,3 68,89 3,8 14,44 31,54
5 28 27 -7,7 59,29 2,8 7,84 -21,56
6 35 31 -0,7 0,49 6,8 46,24 -4,76
7 39 20 3,3 10,89 -4,2 17,64 -13,86
8 39 17 3,3 10,89 -7,2 51,84 -23,76
9 44 35 8,3 68,89 10,8 116,64 89,64
10 44 43 8,3 68,89 18,8 353,44 156,04
Сумма 357 242 588,1 1007,6 416,6
Среднее 35,7 24,2

Рассчитываем эмпирическую величину коэффициента корреляции по формуле расчета коэффициента корреляции Браве–Пирсона:

Определяем критические значения для полученного коэффициента корреляции по таблице. При нахождении критических значений для вычисленного коэффициента линейной корреляции Пирсона число степеней свободы рассчитывается как f = n – 2 = 8. r крит =0,72 > 0,54 , следовательно, гипотеза Н 1 отвергается и принимается гипотеза H 0 , иными словами, связь между временем решения наглядно-образных и вербальных заданий теста не доказана.

1.7 Коэффициент ранговой корреляции Спирмена

Если потребуется установить связь между двумя признаками, значения которых в генеральной совокупности распределены не по нормальному закону, т. е. предположение о том, что двумерная выборка (xi и yi) получена из двумерной нормальной генеральной совокупности, не принимается, то можно воспользоваться коэффициентом ранговой корреляции Спирмена ():

где dx и dy – ранги показателей xi и yi; n – число коррелируемых пар.

Коэффициент ранговой корреляции также имеет пределы 1 и –1. Если ранги одинаковы для всех значений xi и yi, то все разности рангов (dx - dy) = 0 и = 1. Если ранги xi и yi расположены в обратном порядке, то = -1. Таким образом, коэффициент ранговой корреляции является мерой совпадения рангов значений x i и y i .

Когда ранги всех значений x i и y i строго совпадают или расположены в обратном порядке, между случайными величинами Х и Y существует функциональная зависимость, причем эта зависимость не обязательно линейная, как в случае с коэффициентом линейной корреляции Браве-Пирсона, а может быть любой монотонной зависимостью (т. е. постоянно возрастающей или постоянно убывающей зависимостью). Если зависимость монотонно возрастающая, то ранги значений x i и y i совпадают и = 1; если зависимость монотонно убывающая, то ранги обратны и = –1. Следовательно, коэффициент ранговой корреляции является мерой любой монотонной зависимости между случайными величинами Х и Y.

Из формулы видно, что для вычисления необходимо сначала проставить ранги (dx и dy) показателей xi и yi, найти разности рангов (dx - dy) для каждой пары показателей и квадраты этих разностей (dx - dy) 2 . Зная эти значения, находятся суммы , учитывая, что всегда равна нулю. Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным. Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь.

Коэффициент ранговой корреляции Спирмена вычисляется значительно проще, чем коэффициент корреляции Браве-Пирсона при одних и тех же исходных данных, поскольку при вычислении используются ранги, представляющие собой обычно целые числа.

Коэффициент ранговой корреляции целесообразно использовать в следующих случаях:

Если экспериментальные данные представляют собой точно измеренные значения признаков Х и Y и требуется быстро найти приближенную оценку коэффициента корреляции. Тогда даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций;

Когда значения x i и (или) y i заданы в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.

Пример 2. Определить достоверность взаимосвязи между показателями веса и максимального количества сгибания и разгибания рук в упоре лежа у 10 исследуемых с помощью расчета рангового коэффициента корреляции, если данные выборок таковы:

x i ,кг~55; 45; 43; 47; 47; 51; 48; 60; 53;50

y i , кол-во раз ~ 26; 20; 25; 22; 27; 28; 16; 15; 18; 24

1. Расчет рангового коэффициента корреляции Спирмена произведем по формуле:

где: d x и d y - ранги показателей х и у ;

n - число коррелируемых пар или исследуемых.

2 Данные тестирования занести в рабочую таблицу и сделать необходимые расчеты.

Таблица 2 – Данные тестирования

x i d x y i d y
55 9 26 9 0 0
45 2 20 4 -2 4
43 1 25 7 -6 36
47 3.5 22 5 -1.5 2.25
47 3.5 7 8 -4.5 20.25
51 7 28 10 -3 9
48 5 16 2 3 9
60 10 15 1 9 81
53 8 18 3 5 25
50 6 24 6 0 0
= 0 = 186,5

Тогда

3. Сравнить расчетное значение рангового коэффициента корреляции(r ф =-0,13) с табличным значением для n = 10 при α = 5% и сделать вывод.

1) т.к. r ф = -0,13 < 0, то между данными выборок наблюдается прямая отрицательная взаимосвязь, т.е. увеличением показателей веса вызывает снижение максимального количество сгибаний и разгибаний рук в упоре лежа в группе исследуемых;

2) т.к. r ф = -0,13 < r st = 0,64 для n = 10 при α = 5%, то с уверенностью Р = 95% можно говорить о том, что выявленная зависимость недостоверна.

1.8 Основные свойства коэффициентов корреляции

К основным свойствам коэффициента корреляции необходимо отнести следующие:

Коэффициенты корреляции способны характеризовать только линейные связи, т.е. такие, которые выражаются уравнением линейной функции. При наличии нелинейной зависимости между варьирующими признаками следует использовать другие показатели связи;

Значения коэффициентов корреляции – это отвлеченные числа, лежащее в пределах от -1 до +1, т.е. -1 < r < 1;

При независимом варьировании признаков, когда связь между ними отсутствует, r= 0;

При положительной, или прямой, связи, когда с увеличением значений одного признака возрастают значения другого, коэффициент корреляции приобретает положительный знак и находится в пределах от 0 до +1, т.е. 0 < r < 1;

При отрицательной, или обратной, связи, когда с увеличением значений одного признака соответственно уменьшаются значения другого, коэффициент корреляции сопровождается отрицательным знаком и находится в пределах от 0 до –1, т.е. -1 < r <0;

Чем сильнее связь между признаками, тем ближе величина коэффициента корреляции к 1. Если r = ±1, то корреляционная связь переходит в функциональную, т.е. каждому значению признака Х будет соответствовать одно или несколько строго определенных значений признака Y;

Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Этот параметр зависит от числа степеней свободы f= n –2, где n – число коррелируемых пар показателей Х и Y. Чем больше n, тем выше достоверность связи при одном и том же значении коэффициента корреляции.

1.9 Проверка значимости коэффициентов корреляции

Для проверки значимости коэффициентов корреляции чаще всего используют распределение Стьюдента и условие:

, f = N – 2, α = 0,05.


Если условие выполняется, то гипотеза об отсутствии корреляционной связи принимается.

1.10 Критические значения коэффициента парной корреляции

Таблица 3 - Критические значения коэффициента парной корреляции при α=0,05

Для проверки значимости коэффициента парной корреляции нужно сравнить его значение с табличным (критическим) значением r, которое приведено в таблице 3. Для пользования этой таблицей нужно знать число степеней свободы f = N – 2 и выбрать определенный уровень значимости, например равный 0,05. Такое значение уровня значимости называют еще 5%-ным уровнем риска, что соответствует вероятности верного ответа при проверке нашей гипотезы Р = 1 – α = 0,95, или 95%. Это значит, что в среднем только в 5% случаев возможна ошибка при проверке гипотезы.

В практических исследованиях 5%-ный уровень риска применяется наиболее часто. Но экспериментатор всегда свободен в выборе уровня значимости, и возможны ситуации, в которых, например, требуется 1%-ный уровень риска. При этом возрастает надежность ответа. Проверка гипотезы сводится к сравнению абсолютной величины коэффициента парной корреляции с критическим значением. Если экспериментально найденное значение r меньше критического, то нет оснований считать, что имеется тесная линейная связь между параметрами, а если больше или равно, то гипотеза о корреляционной линейной связи не отвергается.

2. РЕШЕНИЕ ЗАДАЧИ

Таблица 1 – Условие задачи

Таблица 2 – Функция отклика

У1 65 60 63 46 47 47 56 54
У2 55 47 46 47 58 56 49 61
УЗ 55 51 61 57 58 53 55 52

2.2 Определение центра плана (основной уровень) и уровня варьирования факторов

Находим центр плана:

.

Находим полуразмах:


Рассчитываем и оформляем в виде таблицы.

,

,

,

Таблица 3 – Центр плана и полуразмах

Рассчитываем нижний уровень варьирования факторов:

Рассчитываем верхний уровень варьирования факторов:

2.3 Построение матрицы планирования

Так как мы имеем 2 уровня варьирования факторов и 3 фактора, то получаем матрицу . Число опытов равно 8.

Таблица 3 – Матрица планирования типа

№ опыта
1 + + -
2 + + +
3 + - +
4 + - -
5 - + -
6 - + +
7 - - +
8 - - -

Составляем расширенную матрицу планирования для того, чтобы учесть взаимодействие факторов.

Таблица 4 – Расширенная матрица планирования

№ опыта
1 + + + - + - - - 65 55 55 58,3
2 + + + + + + + + 60 47 51 52,7
3 + + - + - + - - 63 46 61 56,7
4 + + - - - - + + 46 47 57 50
5 + - + - - + - + 47 58 58 54,3
6 + - + + - - + - 47 56 53 52
7 + - - + + - - + 56 49 55 53,3
8 + - - - + + + - 54 61 52 55,7

2.4 Проверка однородности дисперсии и равноточности измерения в разных сериях

Для проверки однородности дисперсии был выбран критерий Кохрена. Для этого рассчитываем дисперсию в каждом опыте по формуле:

.

Условия проверки однородности дисперсий по критерию Кохрена:


Для уровня значимости 0,05 равна 0,32.

<, следовательно, дисперсия однородна и измерения в разных сериях равноточны.

2.5 Коэффициенты уравнения регрессии

Находим коэффициенты уравнения регрессии.

Следовательно, уравнение регрессии примет вид:

2.6 Дисперсия воспроизводимости

Вычисляем значение дисперсии воспроизводимости по формуле:

2.7 Проверка значимости коэффициентов уравнения регрессии

Проверяем значимость коэффициентов уравнения регрессии по критерию Стьюдента:

Условие значимости Для уровня значимости α = 0,05 и числа степеней свободы f = N - 1 =8 - 1 = 7 находим табличное значение критерия Стьюдента

Сравниваем расчетное значение с табличным и видим, что значение незначительные и их коэффициенты следует исключить из уравнения регрессии. Так как коэффициенты получились незначимы и мы не имеем возможности заново поставить новый эксперимент и продолжаем вычисления, выбрав наиболее близкие к значимым коэффициенты.

Уравнение регрессии примет вид:

2.8 Проверка адекватности уравнения регрессии

Для проверки используется критерий Фишера:

где d – количество коэффициентов уравнения регрессии.

Находим значения :

Найдем значение

Находим табличное значение критерия Фишера для степеней свободы

Сравниваем условие <, значит, модель адекватна.

Уравнение регрессии имеет вид:

Анализ значимости коэффициентов уравнении регрессии показал, что влияние всех факторов незначимо.

Модель адекватна, так как критерий адекватности меньше табличного.

Измерения в различных серий равноточны.

ЗАКЛЮЧЕНИЕ

Термин «корреляция» был введен в науку выдающимся английским естествоиспытателем Френсисом Гальтоном в 1886 году. Однако точную формулу для подсчета коэффициента корреляции разработал его ученик Карл Пирсон.

Задачи с одним выходным параметром имеют очевидные преимущества. Но на практике чаще всего приходится учитывать несколько выходных параметров. Иногда их число довольно велико. Так, например, при производстве резиновых и пластмассовых изделий приходится учитывать физико-механические, технологические, экономические, художественно-эстетические и другие параметры (прочность, эластичность, относительное удлинение и т.д.). Математические модели можно построить для каждого из параметров, но одновременно оптимизировать несколько функций невозможно.

Обычно оптимизируется одна функция, наиболее важная с точки зрения цели исследования, при ограничениях, налагаемых другими функциями. Поэтому из многих выходных параметров выбирается один в качестве параметра оптимизации, а остальные служат ограничениями. Всегда полезно исследовать возможность уменьшения числа выходных параметров. Для этого и используется корреляционный анализ.

С использованием результатов корреляционного анализа исследователь может делать определённые выводы о наличии и характере взаимозависимости, что уже само по себе может представлять существенную информацию об исследуемом объекте. Результаты могут подсказать и направление дальнейших исследований, и совокупность требуемых методов, в том числе статистических, необходимых для более полного изучения объекта.

Особенно реальную пользу применение аппарата корреляционного анализа может принести на стадии ранних исследований в областях, где характеры причин определённых явлений ещё недостаточно понятны. Это может касаться изучения очень сложных систем различного характера: как технических, так и социальных.

СПИСОК ЛИТЕРАТУРЫ

1 Сидоренко Е.В. Методы математической обработки в психологии. Спб.: ООО «Речь», 2000. – 350 с.

2 Лекция на тему: "Корреляционный анализ""// www.kgafk.ru, 2006, 8 с.

3 Ковалев В.В, Волкова О.Н., Анализ хозяйственной деятельности предприятия//polbu.ru, 2005, 2 с.

4 Поляков Л.Е., Коэффициент ранговой корреляции Спирмена//www.eduhmao.ru, 1971, 2 с.

5 Бондарь А.Г., Статюха Г.А. Планирование эксперимента в химической технологии. Киев: Высшая школа, 1976 – 335 с.

6 Адлер Ю.П., Грановский Ю.В., Маркова Е.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976.–278 с.

7 Андерсон Т., Введение в многомерный статистический анализ//www.ami.nstu.ru, 1963, 24 с.

Функциональная зависимость и корреляция . Еще Гиппократ в VI в. до н. э. обратил внимание на наличие связи между телосложением и темпераментом людей, между строением тела и предрасположенностью к тем или иным заболеваниям. Определенные виды подобной связи выявлены также в животном и растительном мире. Так, существует зависимость между телосложением и продуктивностью у сельскохозяйственных животных; известна связь между качеством семян и урожайностью культурных растений и т.д. Что же касается подобных зависимостей в экологии, то существуют зависимости между содержанием тяжелых металлов в почве и снежном покрове от их концентрации в атмосферном воздухе и т.п. Поэтому естественно стремление использовать эту закономерность в интересах человека, придать ей более или менее точное количественное выражение.

Как известно, для описания связей между переменными величинами применяют математические понятие функции f , которая ставит в соответствие каждому определенному значению независимой переменной x определенное значение зависимой переменной y , т.е. . Такого рода однозначные зависимости между переменными величинамиx и y называют функциональными . Однако такого рода связи в природных объектах встречаются далеко не всегда. Поэтому зависимость между биологическими, а также и экологическими признаками имеет не функциональный, а статистический характер, когда в массе однородных индивидов определенному значению одного признака, рассматриваемого в качестве аргумента, соответствует не одно и то же числовое значение, а целая гамма распределяющихся в вариационный ряд числовых значений другого признака, рассматриваемого в качестве зависимой переменной, или функции. Такого рода зависимость между переменными величинами называется корреляционной или корреляцией..

Функциональные связи легко обнаружить и измерить на единичных и групповых объектах, однако этого нельзя проделать с корреляционными связями, которые можно изучать только на групповых объектах методами математической статистики. Корреляционная связь между признаками бывает линейной и нелинейной, положительной и отрицательной. Задача корреляционного анализа сводится к установлению направления и формы связи между варьирующими признаками, измерению ее тесноты и, наконец, к проверке достоверности выборочных показателей корреляции.

Зависимость между переменными X и Y можно выразить аналитически (с помощью формул и уравнений) и графически (как геометрическое место точек в системе прямоугольных координат). График корреляционной зависимости строят по уравнению функции или, которая называетсярегрессией . Здесь и– средние арифметические, найденные при условии, чтоX или Y примут некоторые значения x или y . Эти средние называются условными .

11.1. Параметрические показатели связи

Коэффициент корреляции . Сопряженность между переменными величинами x и y можно установить, сопоставляя числовые значения одной из них с соответствующими значениями другой. Если при увеличении одной переменной увеличивается другая, это указывает на положительную связь между этими величинами, и наоборот, когда увеличение одной переменной сопровождается уменьшением значения другой, это указывает на отрицательную связь .

Для характеристики связи, ее направления и степени сопряженности переменных применяют следующие показатели:

    линейной зависимость – коэффициент корреляции ;

    нелинейный – корреляционной отношение .

Для определения эмпирического коэффициента корреляции используют следующую формулу:

. (1)

Здесь s x и s y – средние квадратические отклонения.

Коэффициент корреляции можно вычислить, не прибегая к расчету средних квадратических отклонений, что упрощает вычислительную работу, по следующей аналогичной формуле:

. (2)

Коэффициент корреляции – безразмерное число, лежащее в пределах от –1 до +1. При независимом варьировании признаков, когда связь между ними полностью отсутствует, . Чем сильнее сопряженность между признаками, тем выше значение коэффициента корреляции. Следовательно, приэтот показатель характеризует не только наличие, но и степень сопряженности между признаками. При положительной или прямой связи, когда большим значениям одного признака соответствуют большие же значения другого, коэффициент корреляции имеет положительный знак и находится в пределах от 0 до +1, при отрицательной или обратной связи, когда большим значениям одного признака соответствуют меньшие значения другого, коэффициент корреляции сопровождается отрицательным знаком и находится в пределах от 0 до –1.

Коэффициент корреляции нашел широкое применение в практике, но он не является универсальным показателем корреляционных связей, так как способен характеризовать только линейные связи, т.е. выражаемые уравнением линейной регрессии (см. тему 12). При наличии нелинейной зависимости между варьирующими признаками применяют другие показатели связи, рассмотренных ниже.

Вычисление коэффициента корреляции . Это вычисление производят разными способами и по-разному в зависимости от числа наблюдений (объема выборки). Рассмотрим отдельно специфику вычисления коэффициента корреляции при наличии малочисленных выборок и выборок большого объема.

Малые выборки . При наличии малочисленных выборок коэффициент корреляции вычисляют непосредственно по значениям сопряженных признаков, без предварительной группировки выборочных данных в вариационные ряды. Для этого служат приведенные выше формулы (1) и (2). Более удобными, особенно при наличии многозначных и дробных чисел, которыми выражаются отклонения вариант х i и y i от средних и, служат следующие рабочие формулы:

где ;

;

Здесь x i и y i – парные варианты сопряженных признаков x и y ; и –средние арифметические;– разность между парными вариантами сопряженных признаковx и y ; n общее число парных наблюдений, или объем выборочной совокупности.

Эмпирический коэффициент корреляции, как и любой другой выборочный показатель, служит оценкой своего генерального параметра ρ и как величина случайная сопровождается ошибкой:

Отношение выборочного коэффициента корреляции к своей ошибке служит критерием для проверки нулевой гипотезы – предположения о том, что в генеральной совокупности этот параметр равен нулю, т.е. . Нулевую гипотезу отвергают на принятом уровне значимостиα , если

Значения критических точек t st для разных уровней значимости α и чисел степеней свободы приведены в табл.1 Приложений.

Установлено, что при обработке малочисленных выборок (особенно когда n < 30 ) расчет коэффициента корреляции по формулам (1) – (3) дает несколько заниженные оценки генерального параметра ρ , т.е. необходимо внести следующую поправку:

z-преобразование Фишера . Правильное применение коэффициента корреляции предполагает нормальное распределение двумерной совокупности сопряженных значений случайных величин x и y . Из математической статистики известно, что при наличии значительной корреляции между переменными величинами, т.е. когда R xy > 0,5 выборочное распределение коэффициента корреляции для большего числа малых выборок, взятых из нормально распределяющейся генеральной совокупности, значительно отклоняются от нормальной кривой.

Учитывая это обстоятельство, Р. Фишер нашел более точный способ оценки генерального параметра по значению выборочного коэффициента корреляции. Этот способ сводится к замене R xy преобразованной величиной z, которая связана с эмпирическим коэффициентом корреляции, следующим образом:

Распределение величины z является почти неизменным по форме, так как мало зависит от объема выборки и от значения коэффициента корреляции в генеральной совокупности, и приближается к нормальному распределению.

Критерием достоверности показателя z является следующее отношение:

Нулевая гипотеза отвергается на принятом уровне значимости α и числе степеней свободы . Значения критических точекt st приведены в табл.1 Приложений.

Применение z-преобразования позволяет с большей уверенностью оценивать статистическую значимость выборочного коэффициента корреляции, а также и разность между эмпирическими коэффициентами , когда в этом возникает необходимость.

Минимальный объем выборки для точной оценки коэффициента корреляции. Можно рассчитать объем выборки для заданного значения коэффициента корреляции, который был бы достаточен для опровержения нулевой гипотезы (если корреляция между признаками Y и X действительно существует). Для этого служит следующая формула:

где n – искомый объем выборки; t – величина, заданная по принятому уровню значимости (лучше для α = 1%); z – преобразованный эмпирический коэффициент корреляции.

Большие выборки . При наличии многочисленных исходных данных их приходится группировать в вариационные ряды и, построив корреляционную решетку, разность по ее клеткам (ячейкам) общие частоты сопряженных рядов. Корреляционная решетка образуется пересечением строк и столбцов, число которых равно числу групп или классов коррелируемых рядов. Классы располагаются в верхней строке и в первой (слева) столбце корреляционной таблицы, а общие частоты, обозначаемые символом f xy , – в клетках корреляционной решетки, составляющей основную часть корреляционной таблицы.

Классы, помещенные в верхней строке таблицы, обычно располагаются слева направо в возрастающем порядке, а в первом столбце таблицы – сверху вниз в убывающем порядке. При таком расположении классов вариационных рядов их общие частоты (при наличии положительной связи между признаками Y и X ) будут распределяться по клеткам решетки в виде эллипса по диагонали от нижнего левого угла к верхнему правому углу решетки или (при наличии отрицательной связи между признаками) в направлении от верхнего левого угла к нижнему правому углу решетки. Если же частоты f xy распределяются по клеткам корреляционной решетки более или менее равномерно, не образуя фигуры эллипса, это будет указывать на отсутствие корреляции между признаками.

Распределение частот f xy по клеткам корреляционной решетки дает лишь общее представление о наличии или отсутствии связи между признаками. Судить о тесноте или менее точно лишь по значению и знаку коэффициента корреляции . При вычислении коэффициента корреляции с предварительной группировки выборочных данных в интервальные вариационные ряды не следует брать слишком широкие классовые интервалы. Грубая группировка гораздо сильнее сказывается на значении коэффициента корреляции, чем это имеет место при вычислении средних величин и показателей вариации.

Напомним, что величина классового интервала определяется по формуле

где x max , x min – максимальная и минимальная варианты совокупности; К – число классов, на которые следует разбить вариацию признака. Опыт показал, что в области корреляционного анализа величину К можно поставить в зависимость от объема выборки примерно следующим образом (табл.1).

Таблица 1

Объем выборки

Значение К

50 ≥ n > 30

100 ≥ n > 50

200 ≥ n > 100

300 ≥ n > 200

Как и другие статистические характеристики, вычисляемые с предварительной группировкой исходных данных в вариационные ряды, коэффициент корреляции определяют разными способами, дающими совершенно идентичные результаты.

Способ произведений . Коэффициент корреляции можно вычислить используя основные формулы (1) или (2), внеся в них поправку на повторяемость вариант в димерной совокупности. При этом, упрощая символику, отклонения вариант от их средних обозначим через а , т.е. и. Тогда формула (2) с учетом повторяемости отклонений примет следующее выражение:

Достоверность этого показателя оценивается с помощью критерия Стьюдента, который представляет отношение выборочного коэффициента корреляции к своей ошибке, определяемой по формуле

Отсюда и если эта величина превышает стандартное значение критерия Стьюдентаt st для степени свободы и уровне значимостиα (см. Таблицу 2 Приложений), то нулевую гипотезу отвергают.

Способ условных средних . При вычислении коэффициента корреляции отклонения вариант (“классов”) можно находить не только от средних арифметических и, но и от условных средних А х и A y . При этом способе в числитель формулы (2) вносят поправку и формула приобретает следующий вид:

где f xy – частоты классов одного и другого рядов распределения; и, т.е. отклонения классов от условных средних, отнесенные к величине классовых интерваловλ ; n – общее число парных наблюдений, или объем выборки; и– условные моменты первого порядка, гдеf x – частоты ряда Х , а f y – частоты ряда Y ; s x и s y – средние квадратические отклонения рядов X и Y , вычисляемые по формуле .

Способ условных средних имеет преимущество перед способом произведений, так как позволяет избегать операции с дробными числами и придавать один и тот же (положительный) знак отклонениям a x и a y , что упрощает технику вычислительной работы, особенно при наличии многозначных чисел.

Оценка разности между коэффициентами корреляции . При сравнении коэффициентов корреляции двух независимых выборок нулевая гипотеза сводится к предположению о том, что в генеральной совокупности разница между этими показателями равна нулю. Иными словами, следует исходить из предположения, что разница, наблюдаемая между сравниваемыми эмпирическими коэффициентами корреляции, возникла случайно.

Для проверки нулевой гипотезы служит t-критерий Стьюдента, т.е. отношение разности между эмпирическими коэффициентами корреляции R 1 и R 2 к своей статистической ошибке, определяемой по формуле:

где s R1 и s R2 – ошибки сравниваемых коэффициентов корреляции.

Нулевая гипотеза опровергается при условии, что для принятого уровне значимостиα и числе степеней свободы .

Известно, что более точную оценку достоверности коэффициента корреляции получают при переводе R xy в число z . Не является исключением и оценка разности между выборочными коэффициентами корреляции R 1 и R 2 , особенно в тех случаях, когда последние вычислены на выборках сравнительно небольшого объема (n < 100 ) и по своему абсолютному значению значительно превышают 0,50.

Разность оценивают с помощью t-критерия Стьюдента, который строят по отношению этой разности к своей ошибке, вычисляемой по формуле

Нулевую гипотезу отвергают, если дляи принятого уровня значимостиα.

Корреляционное отношение . Для измерения нелинейной зависимости между переменными x и y используют показатель, который называют корреляционным отношением , который описывает связь двусторонне. Конструкция корреляционного отношения предполагает сопоставление двух видов вариации: изменчивости отдельных наблюдений по отношению к частным средним и вариации самих частных средних по сравнению с общей средней величиной. Чем меньшую часть составит первый компонент по отношению ко второму, тем теснота связи окажется большей. В пределе, когда никакой вариации отдельных значений признака возле частных средних не будет наблюдаться, теснота связи окажется предельно большой. Аналогичным образом, при отсутствии изменчивости частных средних теснота связи окажется минимальной. Так как это соотношение вариации может быть рассмотрено для каждого из двух признаков, получается два показателя тесноты связи – h yx и h xy . Корреляционное отношение является величиной относительной и может принимать значения от 0 до 1. При этом коэффициенты корреляционного отношения обычно не равны друг другу, т.е. . Равенство между этими показателями осуществимо только при строго линейной зависимости между признаками. Корреляционное отношение является универсальным показателем: оно позволяет характеризировать любую форму корреляционной связи – и линейную, и нелинейную.

Коэффициенты корреляционного отношения h yx и h xy определяют рассмотренными выше способами, т.е. способом произведений и способом условных средних.

Исследование объективно существующих связей между явлениями - важнейшая задача статистики. В процессе статистического исследования зависимостей выявляются причинно-следственные отношения между явлениями. Причинно-следственные отношения - это такая связь явлений и процессов, когда изменение одного из них - причины ведет к изменению другого - следствия.

Признаки явлений и процессов по их значению для изучения взаимосвязи делятся на два класса. Признаки, обуславливающие изменения других, связанных с ними признаков, называют факторными , или просто факторами. Признаки, изменяющиеся под действием факторных признаков, называют результативными .

В статистике различают функциональные и стохастические (вероятностные) связи явлений и процессов:

  • Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно значение результативного.
  • Если причинная зависимость проявляется не в каждом отдельном случае, а в общем, среднем при большом числе наблюдений, то такая зависимость называется стохастической (вероятностной) . Частным случаем стохастической связи является корреляционная связь.

Кроме того, связи между явлениями и их признаками классифицируются по степени тесноты, направлению и аналитическому выражению.

По направлению выделяют связь прямую и обратную:

  • Прямая связь - это такая связь, при которой с увеличением (уменьшением) значений факторного признака происходит увеличение (уменьшение) значений результативного. Так, например, рост производительности труда способствует увеличению уровня рентабельности производства.
  • В случае обратной связи значения результативного признака изменяются под воздействием факторного, но в противоположном направлении по сравнению с изменением факторного признака. Так с увеличением уровня фондоотдачи снижается себестоимость единицы производимой продукции.

По аналитическому выражению выделяют связи прямолинейные (или просто линейные) и нелинейные:

  • Если статистическая связь между явлениями может быть приблизительно выражена уравнением прямой линии, то ее называют линейной связью вида: у=а+bх.
  • Если же связь может быть выражена уравнением какой-либо кривой линии (параболы, гиперболы и др.), то такую связь называют нелинейной (криволинейной) связью .

Теснота связи показывает меру влияния факторного признака на общую вариацию результативного признака. Классификация связи по степени тесноты представлена в таблице 1.

Для выявления наличия связи, ее характера и направления в статистике используются следующие методы: приведения параллельных данных, аналитических группировок, графический, корреляции. Основным методом изучения статистической взаимосвязи является статистическое моделирование связи на основе корреляционного и регрессионного анализа .

Корреляция - это статистическая зависимость между случайными величинами, не имеющая строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой. В статистике принято различать следующие виды корреляции :

  • парная корреляция - связь между двумя признаками (результативным и факторным, или двумя факторными);
  • частная корреляция - зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков;
  • множественная корреляция - зависимость результативного и двух или более факторных признаков, включенных в исследование.

Задачей корреляционного анализа является количественное определение тесноты связи между двумя признаками (при парной связи) и между результативным и множеством факторных признаков (при многофакторной связи).

Теснота связи количественно выражается величиной коэффициентов корреляции, которые давая количественную характеристику тесноты связи между признаками, позволяют определять «полезность» факторных признаков при построении уравнения множественной регрессии.

Корреляция взаимосвязана с регрессией, поскольку первая оценивает силу (тесноту) статистической связи, вторая исследует ее форму.

Регрессионный анализ заключается в определении аналитического выражения связи в виде уравнения регрессии.

Регрессией называется зависимость среднего значения случайной величины результативного признака от величины факторного, а уравнением регрессии – уравнение описывающее корреляционную зависимость между результативным признаком и одним или несколькими факторными.

Формулы корреляционно-регрессионного анализа для прямолинейной связи при парной корреляции представлены в таблице 2.

Таблица 2 - Формулы корреляционно-регрессионного анализа для прямолинейной связи при парной корреляции
Показатель Обозначение и формула
Уравнение прямой при парной корреляции y x = a +bx, где b - коэффициент регрессии
Система нормальных уравнений способом наименьших квадратов для определения коэффициентов a и b
Линейный коэффициент корреляции для определения тесноты связи,
его интерпретация:
r = 0 – связь отсутствует;
0 -1 r = 1 – связь функциональная
Эластичность абсолютная
Эластичность относительная

Примеры решения задач по теме «Основы корреляционного анализа»

Задача 1 (анализ прямолинейной связи при парной корреляции) . Имеются данные о квалификации и месячной выработке пяти рабочих цеха:

Для изучения связи между квалификацией рабочих и их выработкой определить линейное уравнение связи и коэффициент корреляции. Дать интерпретацию коэффициентам регрессии и корреляции.

Решение . Расширим предлагаемую таблицу.

Определим параметры уравнения прямой y x = a +bx . Для этого решим систему уравнений:

Значит коэффициент регрессии равен 18.

Поскольку в - положительное число, то имеется прямая связь между параметрами x и у.
а=92-4×18
а=20
Линейное уравнение связи имеет вид у х =20+18х.

Для определения тесноты (силы) связи между изучаемыми признаками определим величину коэффициента корреляции по формуле:

= (2020-20×460/5)/(√10×√3280) ≈ 180/181,11=0,99. Поскольку коэффициент корреляции больше 0,7, то связь в данном ряду сильная.

Задача 2 . На предприятии цены на изделия снижены с 80 руб. за единицу до 60 руб. После снижения цен продажа возросла с 400 до 500 единиц в день. Определить абсолютную и относительную эластичность. Сделать оценку эластичности с целью возможности (или невозможности) дальнейшего снижения цен.

Решение . Рассчитаем показатели, позволяющие провести предварительный анализ эластичности:

Как видим, темпы снижения цены равны по абсолютной величине темпам увеличения спроса.

Абсолютную и относительную эластичность найдем по формулам:

= (500-400)/(60-80) =100/(-20) -5 - эластичность абсолютная

= (100:400)/(-20:80) = -1 - эластичность относительная

Модуль относительной эластичности равен 1. Это подтверждает тот факт, что темп роста спроса равен темпу снижения цены. В такой ситуации вычислим выручку, получаемую предприятием ранее и после снижения цены: 80*400 = 32 000 руб. в день, 60*500 = 30 000 руб. в день – как видим, выручка снизилась и дальнейшее снижение цен не является целесообразным.

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

Регрессия бывает:

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

У = а 0 + а 1 х 1 +…+а к х к.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.



В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.



Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» - первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» - второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

Пример:


Теперь стали видны и данные регрессионного анализа.