Теория бозе эйнштейна. Конденсат Бозе — Эйнштейна

Конденсация Бозе-Эйнштейна

Несомненно, одним из наиболее впечатляемых результатов современной физики было полученное в 1995 г. экспериментальное доказательство конденсации Бозе-Эйнштейна. В 1924 г. Эйнштейн предсказал существование особого состояния материи, в котором все атомы с определенными свойствами, т.н. бозоны (со спинами, кратными h), могут оставаться с совершенно одинаковыми квантовыми свойствами. В 1995 г. В 1995 г. Эрик Корнел (г. р. 1962) из Национального Института стандартов и технологий и Карл Виман (г. р. 1951) из университета Колорадо сумели охладить с помощью лазерного пучка атомы рубидия и захватить их в магнитную ловушку. Затем было произведено дополнительное охлаждение с помощью метода, называемого испарительным охлаждением, действующим так же, как охлаждается чашка чая, т.е. позволяя улетучиваться более горячим атомам.

Когда достигается очень низкая температура, атомы в новом состоянии начинают двигаться вместе с одной и той же скоростью и в одном и том же направлении, вместо того, чтобы двигаться произвольно, как это имеет место для обычного газа. Атомы теряют свою индивидуальность и теперь становятся одиночной коллективной единицей. Их организованная конфигурация приводит к необычным свойствам. Конденсация Бозе-Эйнштейна получалась в облаке атомов рубидия-87, которые охлаждались до ~ 170 нК. Самый полный образец содержал около 2000 атомов, которые в течение более, чем 15 сек находились в одиночном квантовом состоянии. Вольфганг Кеттерль (г. р. 1957) и его группа из MIT (США) сумели получить конденсат натрия-23, содержащий в сто раз больше атомов. Корнел, Кеттерль и Виман получили в 2001 г. Нобелевскую премию по физике «за достижение конденсации Бозе-Эйнштейна в разряженных газах и за пионерские, фундаментальные изучения свойств этого конденсата». С помощью конденсата Бозе-Эйнштейна возможно изучить некоторые аспекты квантовой механики и, может быть, лучше понять явление сверхпроводимости (свойство некоторых материалов совершенно терять электрическое сопротивление). Происхождение Вселенной, также связывают в некоторых теориях с конденсацией Бозе-Эйнштейна.

Поведение таких сконденсированных атомов по сравнению с обычными атомами, напоминает отличия лазерного свет от света обычной лампы. В лазерном свете все фотоны в фазе - свойство, которое делает лазерные пучки мощными и способными быть сфокусированными в очень малое пятно. Подобным же образом, атомы в конденсате Бозе-Эйнштейна все находятся в фазе, и физики работают над тем, чтобы они вели себя так, чтобы быть «атомным лазером». Такой пучок атомов допускает манипуляции и измерения в удивительно малых масштабах. В атомном лазере все атомы могут двигаться как один. Такие атомные лазеры можно было бы использовать для помещения атомов на подложку с экстраординарной точностью, заменяя обычную фотолитографию. Можно было бы построить и атомный интерферометр, который, поскольку длины волн атомов (волны де Бройля) много меньше световых, мог бы производить измерения с большей точностью по сравнению с лазерным интерферометром. Это позволило бы создать более точные атомные часы, получить и изучить нелинейные взаимодействия, подобные оптическим, и т.д.

Мы могли бы представить много других применений и будущих перспектив лазеров, но надеемся, что и то, о чем говорилось, вполне достаточно, чтобы понять замечательные возможности лазерных устройств в современном обществе.

Из книги Черные дыры и молодые вселенные автора Хокинг Стивен Уильям

8. Мечта Эйнштейна В первые годы XX века две новые теории совершенно изменили наше представление о пространстве и времени, да и о самой реальности тоже. Более чем через семьдесят пять лет мы все еще осознаем их смысл и пытаемся обобщить их в единую теорию, которая опишет все

Из книги Пять нерешенных проблем науки автора Уиггинс Артур

Космологический вклад Эйнштейна Вклад, значительно способствовавший теоретическому осмыслению природы туманностей, поступил в астрономию из Швейцарии. Марсель Гроссман был одним из выпускников швейцарской Высшей технической школы (Политехникума) в Цюрихе. В его

Из книги Капля автора Гегузин Яков Евсеевич

Статья Эйнштейна о лорде Кельвине

Из книги Живой кристалл автора Гегузин Яков Евсеевич

ТЕОРИИ ЭЙНШТЕЙНА И ДЕБАЯ Открытие Дюлонга и Пти оказалось первым этапом почти вековой истории выяснения природы теплоемкости кристалла. Два последующих этапа связаны с именами великих физиков XX века - Альберта Эйнштейна и Петера Дебая. Их достижения относятся к

Из книги История лазера автора Бертолотти Марио

Частная жизнь Эйнштейна После напряженной работы в предыдущие годы, в 1917 г. Эйнштейн серьезно заболел. Его кузина Эльза Эйнштейн, брак которой с торговцем по имени Ловенталь закончился разводом, ухаживала за Эйнштейном и в июне 1919 г. Альберт и Эльза поженились. Эльза,

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Из книги Гиперпространство автора Каку Мичио

Глава 7 Пространство-время Эйнштейна

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

6. Реванш Эйнштейна Суперсимметрия - окончательное решение для полного объединения всех частиц. Абдус Садам Возрождение теории Калуцы-Клейна Эту проблему называли «величайшей в науке всех времен». В прессе ее именовали святым Граалем физики, стремлением объединить

Из книги Возвращение времени [От античной космогонии к космологии будущего] автора Смолин Ли

Мост Эйнштейна-Розена Релятивистское описание черных дыр фигурирует в работе Карла Шварцшильда. В 1916 г., всего через несколько месяцев после того, как Эйнштейн записал свои знаменитые уравнения, Шварцшильд сумел найти для них точное решение и вычислить гравитационное

Из книги Гравитация [От хрустальных сфер до кротовых нор] автора Петров Александр Николаевич

Из книги автора

3. Построение уравнений Эйнштейна Теперь мы в состоянии построить уравнения гравитации в ОТО. Как мы рассказали в главе 6, в начале XX века было постулировано, что гравитационное взаимодействие выражается в искривлении пространства-времени. При этом пространство-время

Из книги автора

4. Решение уравнений Эйнштейна Но если есть уравнения, значит их нужно решать. То есть при ограничениях и условиях каждой конкретной задачи или модели нужно найти метрические коэффициенты в каждой точке пространства-времени и тем самым определить его геометрические

БОЗЕ-ЭЙНШТЕЙНА КОНДЕНСАЦИЯ (бозе-конденсация) - квантовое явление, состоящее в том, что в системе из большого числа частиц, подчиняющихся Бозе - Эйнштейна статистике (бозе-газ или бозе-жидкость), при темп-pax ниже вырождения температуры в состоянии с нулевым имяульсом оказывается конечная доля всех частиц системы. Термин "Б--Э. к." основан на аналогии этого явления с конденсацией газа в жидкость, хотя эти явления совершенно различны, т. к. при Б.- Э. к. она происходит в пространстве импульсов, а распределение частиц в координатном пространстве не меняется. Теория Б.- Э. к. построена А. Эйнштейном (A. Einstein) в 1925 и развита Ф. Лондоном (F. London) в 1938.

Поскольку Б.- Э. к. происходит даже в идеальном бозе-газе, её причиной являются свойства волновой ф-ции частиц, а не взаимодействия между ними. Для идеального бозе-газа из Бозе - Эйнштейна распределения

(где T - абс. темп-pa, e р - энергия частицы с импульсом - хим. потенциал) следует, что в низшем энергетич. состоянии с находится частиц. Из положительности следует, что Если фактор вырождения близок к 1, то в состоянии с может быть очень много частиц. Поэтому нельзя пренебрегать вкладом частиц с при вычислении ср. величин. Из условия постоянства полного числа частиц в объёме V следует ур-ние для :

- длина волны де-Бройля, соответствующая тепловому движению, т - масса частицы. Отсюда T 0 - темп-pa бозе-конденсации, или темп-pa вырождения, находится из условия , к-рое записывают в след. виде: .

При T=0 все частицы находятся в конденсате, при в конденсате находится лишь N 0 частиц, а остальные подчиняются с . При давление оказывается ф-цией только темп-ры и не зависит от объёма, т. к. частицы конденсата, не обладая импульсом, не дают вклада в давление. При производная теплоёмкости испытывает конечный скачок, а сама теплоёмкость, энергия и давление остаются непрерывными, следовательно система совершает своеобразный фазовый переход.

при , где а - длина рассеяния для потенциала взаимодействия. Если плотность не мала, то число частиц в конденсате можно оценить вариационным методом. Для бозе-жидкости со взаимодействием молекул как твёрдых сфер диаметра b

Для см, см 3 , поэтому 0,08. По оценкам, основанным на рассеянии нейтронов, плотность конденсата в неск. % и обладает примерно такой же температурной зависимостью, как и плотность сверхтекучей компоненты. Однако плотность частиц конденсата и плотность сверхтекучей компоненты нельзя отождествить, т. к. при T=0 К вся жидкость является сверхтекучей, хотя не все её частицы находятся в конденсате.

В четверг, 24 ноября, в одном из самых престижных научных журналов - Nature - появилась статья ученых, которым впервые удалось получить конденсат Бозе-Эйнштейна на основе фотонов. Вероятнее всего, большинству читателей предыдущее предложение ни о чем не сказало - и не удивительно. Конденсат Бозе-Эйнштейна - это очень специфическая, но невероятно интересная форма вещества, которую иногда называют его пятым состоянием, приравнивая к твердому, жидкому, газообразному и плазме. Когда вещество находится в этом состоянии, в нем начинают на макроуровне проявляться квантовые эффекты - фактически, конденсат Бозе-Эйнштейна представляет собой большую (очень большую) квантовую частицу.

Теория

Конденсат Бозе-Эйнштейна (КБЭ) на основе фотонов - это весьма "продвинутый" вариант КБЭ, и очень долго считалось, что его нельзя получить в принципе. Но прежде чем рассказать о нем, стоит пояснить, а что вообще такое конденсат Бозе-Эйнштейна. Родиной этого понятия может считаться Индия – именно там большую часть времени жил и работал человек, впервые указавший на возможность существования неизвестного ранее состояния материи. Этого человека звали Шатьендранат Бозе, и он был одним из отцов-основателей квантовой механики.

Чтобы отметить научные заслуги Бозе, в его честь был назван один из типов элементарных частиц – бозоны. К бозонам относятся, например, фотоны - переносчики электромагнетизма, и глюоны, которые переносят сильное взаимодействие и определяют притяжение друг к другу кварков. Знаменитый бозон Хиггса, ради поисков которого был создан Большой адронный коллайдер, тоже относится к этой категории элементарных частиц.

Принадлежность частицы к бозонам определяется по ее спину – собственному моменту импульса элементарных частиц (иногда понятие спина определяют как вращение частицы вокруг собственной оси, но такое представление слишком упрощает ситуацию). Спин бозона всегда целый - то есть выражается целым числом. У другой разновидности элементарных частиц - фермионов - спин полуцелый.

Фермионы (слева) выстраиваются "в линейку" по энергиям квантовых уровней, а бозоны (справа) могут скапливаться на уровне с наименьшей энергией. Изображение выпуска 23 бюллетеня ПерсТ за 2003 год

Бозоны и фермионы отличаются друг от друга не только значением спина - эти частицы несходны по целому ряду фундаментальных свойств. В частности, бозоны могут не подчиняться так называемому принципу, или запрету, Паули, который постулирует, что две элементарные частицы не могут находиться в одном и том же квантовом состоянии. Квантовые состояния отличаются друг от друга по энергиям, и при низких температурах фермионы (которые строго соблюдают запрет Паули) поочередно заполняют последовательные состояния. Первыми занимаются состояния с наименьшей энергией (самые "ненапряжные" для частиц), а последними – с самой высокой энергией. Нагляднее всего это свойство фермионов выстраиваться в линейку по квантовым состояниям заметно при низких температурах, когда поведение системы не маскируется за счет температурных флуктуаций.

Бозоны при низких температурах ведут себя иначе - они не ограничены запретом Паули и поэтому стремятся по возможности занять самые удобные места, то есть квантовые уровни с наименьшей энергией. В итоге при охлаждении бозонов происходит следующее: они начинают двигаться очень медленно - со скоростями порядка нескольких миллиметров в секунду, очень тесно "прижимаются" друг к другу, "соскакивают" в одно и то же квантовое состояние и в конце концов начинают вести себя скоординировано - так, как вела бы себя одна гигантская квантовая частица.

Именно о такой трансформации, которая должна происходить с бозонами при температурах, близких к абсолютному нулю, Шатьендранат Бозе написал в начале 1920-х годов Альберту Эйнштейну. Бозе собирался послать свои выкладки в журнал Zeitschrift fur Physik , но Эйнштейн так вдохновился идеями индийского коллеги, что немедленно сам перевел его статью с английского на немецкий и отправил в редакцию. Создатель общей и специальной теорий относительности развил соображения Бозе (индус рассматривал только фотоны, а Эйнштейн дополнил теорию Бозе для частиц, обладающих массой) и изложил свои выводы еще в двух статьях, которые также были опубликованы в Zeitschrift fur Physik .

Практика

Таким образом, теория КБЭ была, в общем и целом, разработана в первой трети XX века, но получить вещество в этом состоянии ученым удалось только через 70 лет. Причина задержки проста - для того чтобы бозоны начали вести себя как единая квантовая система, их нужно охладить до температуры, отличающейся от абсолютного нуля (минус 273,15 градуса Цельсия) на несколько миллионных долей градуса. Долгое время физики просто не умели добиваться столь низких температур. Вторая сложность заключалась в том, что многие вещества при приближении к абсолютному нулю начинают вести себя как жидкости, а для получения КБЭ необходимо, чтобы они оставались "газами" (слово "газ" взято в кавычки, так как при сверхнизких температурах частицы вещества теряют подвижность - один из основополагающих признаков газа).

В середине 1990-х годов было показано, что щелочные металлы натрий и рубидий при охлаждении сохраняют "правильные" свойства, а значит, теоретически могут перейти в состояние КБЭ (и изотоп рубидия-87, и единственный изотоп натрия-23 имеют целые атомные спины и являются так называемыми составными бозонами). Для того чтобы понизить температуру атомов рубидия до требуемых сверхнизких значений, исследователи Эрик Корнелл (Eric A. Cornell) и Карл Вимен (Carl Wieman) из JILA - объединенного института Национального института стандартов и технологии США (NIST) и университета штата Колорадо в Боулдере - использовали лазерное охлаждение вместе с охлаждением испарением.

При помощи лазеров атомы охлаждаются так: атом поглощает движущиеся ему навстречу фотоны и затем испускает излучение. При этом происходит постепенное замедление атома, а температура совокупности атомов, соответственно, понижается. Однако одного лазерного охлаждения недостаточно для достижения температур, при которых возможен переход в состояние КБЭ. "Убрать" лишние доли градуса можно, если изъять из смеси самые быстрые атомы (по такому же принципу охлаждается чашка чая, оставленная на столе).

Согласно принципу квантово-волнового дуализма, объекты микромира могут вести себя и как частицы и как волны. Чтобы вещество перешло в состояние КБЭ, его атомы должны сблизиться на расстояние, сравнимое с их длиной волны. Тогда волны начинают взаимодействовать, и поведение отдельных частиц становится скоординированным.

В 1995 году ученым из JILA удалось охладить около 2 тысяч атомов рубидия-87 до температуры 20 нанокельвинов (один нанокельвин – это 1x10 -9 кельвина), и в итоге они перешли в состояние КБЭ. В экспериментальной камере конденсат удерживался при помощи магнитной ловушки особой конструкции. Через четыре месяца после того, как группа Корнелла и Вимена опубликовала результаты своих опытов, появилась статья физика Вольфганга Кеттерле (Wolfgang Ketterle) из Массачусетского технологического института (MIT), который сумел получить КБЭ на основе атомов натрия. Кеттерле использовал несколько иной принцип удержания атомов в магнитной ловушке, и ему удалось перевести в "пятое состояние материи" намного больше атомов, чем его коллегам из JILA. В 2001 году все трое ученых были удостоены Нобелевской премии по физике.

С 1995 года получением и изучением КБЭ занялось множество групп физиков, которые исследовали возникающие в нем завихрения, интерференцию волн между конденсатами и много чего другого. В 2009 году ученым впервые в это состояние атомы кальция - возникающая волновая картина для этого элемента заметно более четкая, чем для щелочных металлов. В 2003 году группа Кеттерле смогла создать аналог лазера из КБЭ и даже получить КБЭ из фермионов. Наконец, в 2010 году был впервые - долгое время многие физики были уверены, что это принципиально невозможно.

В частности, специалисты полагали, что кванты света будут поглощаться стенками экспериментальной камеры и "ускользать" от экспериментаторов. Для того чтобы поймать, охладить и удержать достаточное для получения и изучения КБЭ количество фотонов, ученые из университета Бонна использовали два изогнутых зеркала, расстояние между которыми составляло около 1,5 микрометров - это сравнимо с длиной волны фотонов, находящихся в квантовом состоянии с минимальной энергией.

Метод лазерного охлаждения для фотонов неприменим - они слишком слабо взаимодействуют друг с другом, поэтому исследователи охлаждали их при помощи специального красителя, который поглощал и испускал кванты света. Фотоны сталкивались с его молекулами и постепенно их температура выравнивалась с температурой красителя. В отличие от атомов, для получения КБЭ на основе фотонов их не нужно охлаждать до нуля кельвинов - переход происходит уже при комнатной температуре. Сами фотоны исследователи "закачивали" в щель при помощи лазера. Переход в состояние КБЭ происходил, когда число фотонов приближалось к 60 тысячам.

У читателей может возникнуть вопрос, а зачем ученые возятся с этим непонятным КБЭ. То есть чисто фундаментальный интерес физиков "пощупать" и непосредственно увидеть проявление закономерностей квантовой механики понятен, но есть ли у "пятого состояния" какое-нибудь полезное практическое применение? Как и в случае с другими физическими открытиями, такой вопрос преждевременен - вряд ли ученые, исследовавшие свойства радиоактивного распада или электронов, могли предсказать, насколько масштабными окажутся последствия их работ.

Во-первых, рано или поздно инженеры придумывают новые приборы, в которых изучаемые объекты используются непосредственно и которые не могли быть изобретены до того, как физики описали свойства этих объектов. А во-вторых, исследование новых явлений расширяет представления людей о физике и позволяет в будущем открывать и объяснять другие неизвестные ранее явления, которые лягут в основу новых приборов и технологий, и так далее.

На данный момент одним из наиболее очевидных практических применений КБЭ считается создание на его основе сверхточных детекторов - например, детекторов магнитного или гравитационного полей. Более детальные предсказания можно будет делать по мере дальнейшего изучения свойств КБЭ, которое продвигается очень-очень быстро.


Биографы в большинстве своём игнорируют последние 30 лет жизни Эйнштейна, рассматривая их как нечто неловкое, недостойное гения, как пятно на его во всём остальном кристально чистой истории. Однако научный прогресс последних десятилетий позволил нам совершенно по-новому взглянуть на наследие Эйнштейна. Дело в том, что его работа была настолько фундаментальной, так перевернула само основание человеческого знания, что влияние Эйнштейна до сих пор ощущается в физике. Многие семена, посеянные Эйнштейном, прорастают только сейчас, в XXI веке, прежде всего потому, что наши инструменты - космические телескопы, рентгеновские космические обсерватории, лазеры - стали достаточно мощными и чувствительными, чтобы проверить самые разные его предсказания, сделанные несколько десятилетий назад.

Можно утверждать, что крошки со стола Эйнштейна помогают сегодня учёным выиграть Нобелевскую премию. Более того, с появлением теории суперструн эйнштейнова концепция обобщения всех сил, служившая когда-то объектом осмеяния и пренебрежительных комментариев, в наше время выходит на центральное место в мире теоретической физики. В этой главе обсуждаются новые достижения в трёх областях, где наследие Эйнштейна продолжает жить и править миром физики: это квантовая теория, общая теория относительности и космология, а также единая теория поля.

В 1924 году, когда Эйнштейн только написал работу по конденсату Бозе - Эйнштейна, он не думал, что это занятное явление будет обнаружено в сколько-нибудь обозримом будущем. Ведь для того чтобы все квантовые состояния коллапсировали в гигантский суператом, необходимо было охладить материалы почти до абсолютного нуля.

В 1995 году, однако, Эрик Корнелл из Национального института стандартов и технологии и Карл Виман из Университета Колорадо сделали именно это, получив чистый конденсат Бозе - Эйнштейна из 2000 атомов рубидия при температуре на двадцать миллиардных долей градуса выше абсолютного нуля. Кроме того, Вольфганг Кеттерле из Массачусетского технологического института независимо от них тоже получил конденсат Бозе - Эйнштейна, в котором было достаточно атомов натрия, чтобы проводить на нём важные эксперименты. Он доказал, что эти атомы демонстрируют интерференционную картину, соответствующую состоянию, когда атомы скоординированы друг с другом. Иными словами, они вели себя как суператом, предсказанный Эйнштейном более 70 лет назад.

Практическое применение конденсата Бозе - Эйнштейна ещё впереди, пока идёт лишь процесс осознания

После первоначального объявления открытия в этой быстро развивающейся области посыпались как из рога изобилия. В 1997 году в МТИ Кеттерле с коллегами создали первый в мире «атомный лазер» с использованием бозе-эйнштейновского конденсата. Как известно, удивительные свойства лазерному свету придает то, что фотоны движутся в унисон друг с другом, тогда как обычный свет хаотичен и некогерентен. Поскольку вещество тоже обладает волновыми свойствами, рассуждали физики, поток атомов можно сделать когерентным; однако прогресс в этом направлении стопорился из-за отсутствия бозе-эйнштейновского конденсата. Теперь же физики достигли своей цели тем, что сначала охладили набор атомов и превратили их в конденсат, а затем направили на этот конденсат лазерный луч, который выстроил из атомов синхронизированный пучок.

В 2001 году Корнелл, Виман и Кеттерле были удостоены Нобелевской премии по физике. Нобелевский комитет наградил их «за экспериментальное наблюдение бозе-эйнштейновской конденсации в разреженных газах атомов щелочных металлов и за первые фундаментальные исследования свойств таких конденсатов». Практическое применение конденсата Бозе - Эйнштейна ещё впереди, пока идёт лишь процесс осознания. Лучи атомных лазеров могли бы оказаться в будущем ценным инструментом в применении к нанотехнологиям. Возможно, они позволят манипулировать отдельными атомами и создавать слои атомных плёнок для полупроводников в компьютерах будущего.

Помимо атомных лазеров некоторые учёные говорят о построении квантовых компьютеров (компьютеров, вычисляющих при помощи отдельных атомов) на основе бозе-эйнштейновского конденсата, которые со временем могли бы заменить обычные кремниевые компьютеры. Другие говорят о том, что скрытая масса, или тёмная материя, может отчасти состоять из бозе-эйнштейновского конденсата. Если это так, то именно в этом странном состоянии может находиться бо́льшая часть вещества Вселенной.

Кроме того, деятельность Эйнштейна вынудила квантовых физиков заново обдумать свою преданность первоначальной копенгагенской интерпретации этой теории. Ещё в 1930–1940-е годы, когда квантовые физики радостно хихикали за спиной Эйнштейна, игнорировать этого гиганта современной физики было совсем несложно, ведь значительные открытия в квантовой физике делались едва ли не ежедневно. Кто готов был тратить время на проверку фундаментальных положений квантовой теории, когда физики спешили собирать Нобелевские премии как яблоки с ветки? Проводились сотни расчётов по свойствам металлов, полупроводников, жидкостей, кристаллов и других материалов, результаты которых легко могли привести к созданию целых промышленных отраслей. На остальное просто не было времени. Вследствие этого физики десятилетиями просто привыкали к интерпретациям копенгагенской школы, «заметая под ковёр» не имеющие ответа глубокие философские вопросы. Споры Бора с Эйнштейном были забыты. Однако сегодня, когда на многие «простые» вопросы о веществе получены чёткие ответы, гораздо более сложные вопросы, поднятые Эйнштейном, по-прежнему остаются без ответа. В частности, по всему миру проводятся десятки международных конференций, на которых физики заново рассматривают проблему кота Шрёдингера, упомянутую в 7-й главе. Теперь, когда экспериментаторы научились манипулировать отдельными атомами, проб­лема кота перестала носить чисто академический характер. Более того, от её решения может зависеть конечная судьба компьютерных технологий, которыми определяется значительная доля мирового богатства, поскольку компьютеры будущего, возможно, будут работать на транзисторах, построенных из отдельных атомов.

Мы живём по другую сторону стены, где все волновые функции уже схлопнулись

Сегодня признаётся, что из всех альтернативных вариантов копенгагенская школа Бора предлагает наименее привлекательный ответ на проблему кота, хотя до сих пор никаких экспериментальных отклонений от первоначальной боровской интерпретации не обнаружено. Копенгагенская школа постулирует существование «стены», отделяющей повседневный макроскопический мир деревьев, гор и людей, который мы видим вокруг себя, от загадочного контр­интуитивного микроскопического мира квантов и волн. В микроскопическом мире элементарные частицы существуют в промежуточном состоянии между бытием и небытием. Однако мы живём по другую сторону стены, где все волновые функции уже схлопнулись, поэтому наша макроскопическая вселенная кажется нам стабильной и вполне определённой. Иными словами, наблюдателя от наблюдаемого объекта отделяет стена.

Некоторые физики, включая нобелевского лауреата Юджина Вигнера, пошли ещё дальше. Ключевой элемент наблюдения, подчёркивал Вигнер, - это сознание. Чтобы провести наблюдение и определить реальность кота, необходим наделённый сознанием наблюдатель. Но кто наблюдает за наблюдателем? Наблюдателю тоже необходим свой наблюдатель (именуемый «другом Вигнера»), который определил бы, что наблюдатель жив. Но это подразумевает существование бесконечной цепочки наблюдателей, каждый из которых наблюдает за соседом и определяет, что предыдущий наблюдатель жив и здоров. Для Вигнера это означало, что где-то существует, возможно, некое космическое сознание, определяющее природу самой Вселенной! Он писал: «Само изучение внешнего мира привело к выводу о том, что содержимое сознания и есть конечная реальность». Кое-кто утверждал в связи с этим, что это доказывает существование Бога, некоего космического сознания, или то, что сама Вселенная каким-то образом обладает сознанием. Как сказал однажды Планк, «наука не в состоянии разрешить конечную загадку Природы. А всё потому, что в конечном итоге мы сами являемся частью загадки, которую пытаемся разрешить».

За прошедшие десятилетия были предложены и другие интерпретации. В 1957 году Хью Эверетт, в то время аспирант физика Джона Уилера, предложил, возможно, самое радикальное решение проблемы кота - «многомировую» теорию, согласно которой все возможные вселенные существуют одновременно. Кот в самом деле может быть мёртвым и живым одновременно, потому что сама Вселенная расщепилась надвое. Следствия из этой идеи, откровенно говоря, неуютны, поскольку при этом подразумевается, что Вселенная постоянно, каждое квантовое мгновение раздваивается, образуя бесконечное число квантовых вселенных. Сам Уилер, поначалу горячо поддержавший идею своего студента, позже отказался от неё, заявив, что с таким подходом связано слишком много «метафизического багажа». Представьте, к примеру, космический луч, пронзающий в подходящий момент чрево матери Уинстона Черчилля и вызывающий выкидыш. Таким образом, одно квантовое событие отделяет нас от вселенной, в которой Черчилль, способный поднять народ Англии и всего мира на борьбу с убийственными силами Адольфа Гитлера, попросту не родился. В той параллельной вселенной нацисты, возможно, выиграли Вторую мировую войну и поработили значительную часть мира. Или представьте себе мир, где солнечный ветер, запускаемый квантовыми событиями, сбил с пути ту комету или метеорит, который 65 млн лет назад угодил в мексиканский полуостров Юкатан и стёр с лица Земли динозавров. В той параллельной вселенной человек не появился вовсе и Манхэттен, где я сейчас живу, населен неистовыми динозаврами.

В целом частицы можно разделить на фермионы и бозоны (с полуцелым и целым значением спина). Когда вы охлаждаете бозоны до температур, близких к абсолютному нулю, они могут сконденсироваться в коллективное состояние материи, известное как конденсат Бозе - Эйнштейна , когда довольно большое число атомов оказывается в идентичном квантовом состоянии, что позволяет наблюдать разные необычные феномены, вроде той же сверхпроводимости.

Первый опыт по получению конденсата имел дело с атомами рубидия, охлаждёнными почти до абсолютного нуля. Слева - данные по распределению скорости атомов до появления конденсата, в центре - сразу после, справа - через некоторое время. (Илл. R. Zhang.)

От теоретического постулирования конденсата в 1925 году до его первого обнаружения в лаборатории прошло 60 лет, но до покорения всех вершин, связанных с этим явлением, всё ещё очень далеко. В частности, конденсат получали на основе атомов рубидия в газообразном состоянии, хотя было бы куда лучше иметь дело с фотонами. Кроме чисто теоретического значения, такой результат мог бы найти и применение - в лазерах с необычными свойствами или даже новых типах солнечных батарей.

Но могут ли фотоны «сконденсироваться»? Частицы света не имеют массы, а ведь её наличие кажется ключевым требованием для получения конденсата Бозе - Эйнштейна. Чтобы преодолеть эту сложность, физики пробовали удерживать свет в оптическом резонаторе, между двумя параллельными светоотражающими пластинами, что заставило бы фотоны вести себя так, словно масса у них есть. Чтобы свет не «утекал» из такой ловушки, её стенки следует выполнять слегка искривлёнными.

В 2010 году было экспериментально показано, что создание такой ловушки вполне реально, но оставались серьёзные проблемы с интерпретацией результатов таких опытов. Чтобы быть уверенными в них, надо было выполнить несколько специфических требований. Во-первых, вся система должна быть двумерной, абсолютно плоской, что весьма непросто реализовать в трёхмерном мире. Во-вторых, нужна уверенность, что среда между фотонами (а это не воздух) не влияет на их «конденсацию» при охлаждении.