Уроки дистанционное управление на контроллерах своими руками. Как сделать радиоуправляемую машинку? Однокомандное приемное устройство

Самые любимые и вместе с тем трудновыполнимые электронные игрушки для юных радиолюбителей.

Управление моделями по радио

Статья представляет собой цикл публикаций по конструированию и работе аппаратуры управления по радио электромеханическими игрушками и моделями.

Выбор модели и системы управления

Существуют несколько систем радиосвязи, которые можно применить для телеуправления. Не все мы будем рассматривать, да и не все нам подойдут. Сначала необходимо определиться с будущей системой радиоуправления. Да и с выбором конкретной модели электромеханической игрушки желательно определиться сразу же, чтобы потом не мучиться с проблемой размещения электроники во внутренности автомодели.

Передатчик

Редкое исключение из правила, когда передатчик системы связи проще приемника. Здесь это так, поэтому начнем знакомство телеуправления с изготовления передатчика, который на поверку оказывается достаточно универсальным и подходит для различных моделей управления.

Однокомандное приемное устройство

Вот и настала очередь приемника для системы радиоуправления моделями. В простейшем случае это однокомандное устройство, функции которого вполне достаточно, чтобы модель двигалась и поворачивала, хоть только и в одну сторону.

Двухканальное четырехкомандное приемное устройство

Более сложный вариант приемного устройства системы телеуправления моделями по радио. Название говорит само за себя: аппаратура позволяет игрушке выполнять четыре команды, обеспечивая весь спектр движения по плоскости.

Выбор модели дискретно-пропорционального управления

Более сложная система телеуправления моделями — дискретно-пропорциональная, которая позволяет кардинально улучшить управляемость игрушкой. Но и проблема выбора модели тоже усложняется: она должна быть совместима с принципом системы радиоуправления.

Передатчик для управления летающими моделями

Управление летающими моделями (самолетами) очень увлекательное занятие для детворы. До сих пор где-нибудь проводятся соревнования по боям на кордовых моделях. А вот модель, оборудованная радиосистемой телеуправления — вообще предел мечтаний любого мальчишки. В предлагаемой статье рассказывается о том, как из дискретно-пропорциональной аппаратуры сделать двухканальную систему управления летающими моделями.

Для радиоуправления различными моделями и игрушками может быть использована аппаратура дискретного и пропорционального действия.

Основное отличие аппаратуры пропорционального действия от дискретной состоит в том, что она позволяет по командам оператора отклонять рули модели на любой требуемый угол и плавно изменять скорость и направление ее движения «Вперед» или «Назад».

Постройка и налаживание аппаратуры пропорционального действия достаточно сложны и не всегда под силу начинающему радиолюбителю.

Хотя аппаратура дискретного действия и имеет ограниченные возможности, но, применяя специальные технические решения, можно их расширить. Поэтому далее рассмотрим однокомандную аппаратуру управления, пригодную для колесных, летающих и плавающих моделей.

Схема передатчика

Для управления моделями в радиусе 500 м, как показывает опыт, достаточно иметь передатчик с выходной мощностью окьло 100 мВт. Передатчики радиоуправляемых моделей, как правило, работают в диапазоне 10 м.

Однокомандное управление моделью осуществляется следующим образом. При подаче команды управления передатчик излучает высокочастотные электромагнитные колебания, другими словами, генерирует одну несущую частоту.

Приемник, который находится на модели принимает сигнал, посланный передатчиком, в результате чего срабатывает исполнительный механизм.

Рис. 1. Принципиальная схема передатчика радиоуправляемой модели.

В итоге модель, подчинясь команде, меняет направление движения или осуществляет одно какое-нибудь заранее заложенное в конструкцию модели указание. Используя однокомандную модель управления, можно заставить модель осуществлять достаточно сложные движения.

Схема однокомандного передатчика представлена на рис. 1. Передатчик включает задающий генератор колебаний высокой частоты и модулятор.

Задающий генератор собран на транзисторе VT1 по схеме емкостной трех-точки. Контур L2, С2 передатчика настроен на частоту 27,12 МГц, которая отведена Госсвязьнадзором электросвязи для радиоуправления моделями.

Режим работы генератора по постоянному току определяется подбором величины сопротивления резистора R1. Созданные генератором высокочастотные колебания излучаются в пространство антенной, подключенной к контуру через согласующую катушку индуктивности L1.

Модулятор выполнен на двух транзисторах VT1, VT2 и представляет собой симметричный мультивибратор. Модулируемое напряжение снимается с коллекторной нагрузки R4 транзистора VT2 и подается в общую цепь питания транзистора VT1 высокочастотного генератора, что обеспечивает 100% модуляцию.

Управляется передатчик кнопкой SB1, включенной в общую цепь питания. Задающий генератор работает не непрерывно, а только при нажатой кнопке SB1, когда появляются импульсы тока, вырабатываемые мультивибратором.

Посылка в антенну высокочастотных колебаний, созданных задающим генератором, происходит отдельными порциями, частота следования которых соответствует частоте импульсов модулятора.

Детали передатчика

В передатчике использованы транзисторы с коэффициентом передачи тока базы h21э не менее 60. Резисторы типа МЛТ-0,125, конденсаторы — К10-7, КМ-6.

Согласующая антенная катушка L1 имеет 12 витков ПЭВ-1 0,4 и намотана на унифицированном каркасе от карманного приемника с подстроечным ферритовым сердечником марки 100НН диаметром 2,8 мм.

Катушка L2 бескаркасная и содержат 16 витков провода ПЭВ-1 0,8 намотанных на оправке диаметром 10 мм. В качестве кнопки управления можно использовать микропереключатель типа МП-7.

Детали передатчика монтируют на печатной плате из фольгированного стеклотекстолита. Антенна передатчика представляет собой отрезок стальной упругой проволоки диаметром 1...2 мм и длиной около 60 см, которая подключается прямо к гнезду X1, расположенному на печатной плате.

Все детали передатчика должны быть заключены в алюминиевый корпус. На передней панели корпуса располагается кнопка управления. В месте прохождения антенны через стенку корпуса к гнезду XI должен быть установлен пластмассовый изолятор, чтобы предотвратить касание антенны корпуса.

Налаживание передатчика

При заведомо исправных деталях и правильном монтаже передатчик не требует особой наладки. Необходимо только убедиться в его работоспособности и, изменяя индуктивность катушки L1, добиться максимальной мощности передатчика.

Для проверки работы мультивибратора надо включить высокоомные наушники между коллектором VT2 и плюсом источника питания. При замыкании кнопки SB1 в наушниках должен прослушиваться звук низкого тона, соответствующий частоте мультивибратора.

Для проверки работоспособности генератора ВЧ необходимо собрать волномер по схеме рис. 2. Схема представляет собой простой детекторный приемник, в котором катушка L1 намотана проводом ПЭВ-1 диаметром 1...1,2мм и содержит 10 витков с отводом от 3 витка.

Рис. 2. Принципиальная схема волномера для настройки передатчика.

Катушка намотана с шагом 4 мм на пластмассовом каркасе диаметром 25 мм. В качестве индикатора используется вольтметр постоянного тока с относительным входным сопротивлением 10 кОм/В или микроамперметр на ток 50...100мкА.

Волномер собирают на небольшой пластине из фольгированного стеклотекстолита толщиной 1,5 мм. Включив передатчик, располагают от него волномер на расстоянии 50...60 см. При исправном генераторе ВЧ стрелка волномера отклоняется на некоторый угол от нулевой отметки.

Настраивая генератор ВЧ на частоту 27,12 МГц, сдвигая и раздвигая витки катушки L2, добиваются максимального отклонения стрелки вольтметра.

Максимальную мощность высокочастотных колебаний, излучаемых антенной, получают вращением сердечника катушки L1. Настройка передатчика считается оконченной, если вольтметр волномера на расстоянии 1...1,2 м от передатчика показывает напряжение не менее 0,05 В.

Схема приемника

Для управления моделью радиолюбители довольно часто используют приемники, построенные по схеме сверхрегенератора. Это связано с тем, что сверхрегенеративный приемник, имея простую конструкцию, обладает очень высокой чувствительностью, порядка 10...20 мкВ.

Схема сверхрегенеративного приемника для модели приведена на рис. 3. Приемник собран на трех транзисторах и питается от батареи типа «Крона» или другого источника напряжением 9 В.

Первый каскад приемника представляет собой сверхрегенеративный детектор с самогаше-нием, выполненный на транзисторе VT1. Если на антенну не поступает сигнал, то этот каскад генерирует импульсы высокочастотных колебаний, следующих с частотой 60...100 кГц. Это и есть частота гашения, которая задается конденсатором С6 и резистором R3.

Рис. 3. Принципиальная схема сверхрегенеративного приемника радиоуправляемой модели.

Усиление выделенного командного сигнала сверхрегенеративным детектором приемника происходит следующим образом. Транзистор VT1 включен по схеме с общей базой и его коллекторный ток пульсирует с частотой гашения.

При отсутствии на входе приемника сигнала, эти импульсы детектируются и создают на резисторе R3 некоторое напряжение. В момент поступления сигнала на приемник продолжительность отдельных импульсов возрастает, что приводит к увеличению напряжения на резисторе R3.

Приемник имеет один входной контур L1, С4, который с помощью сердечника катушки L1 настраивается на частоту передатчика. Связь контура с антенной — емкостная.

Принятый приемником сигнал управления выделяется на резисторе R4. Этот сигнал в 10...30 раз меньше напряжения частоты гашения.

Для подавления мешающего напряжения с частотой гашения между сверхрегенеративным детектором и усилителем напряжения включен фильтр L3, С7.

При этом на выходе фильтра напряжение частоты гашения в 5... 10 раз меньше амплитуды полезного сигнала. Продетектированный сигнал через разделительный конденсатор С8 подается на базу транзистора VT2, представляющего собой каскад усиления низкой частоты, а далее на электронное реле, собранное на транзисторе ѴТЗ и диодах VD1, VD2.

Усиленный транзистором ѴТЗ сигнал выпрямляется диодами VD1 и VD2. Выпрямленный ток (отрицательной полярности) поступает на базу транзистора ѴТЗ.

При появлении тока на входе электронного реле, коллекторный ток транзистора увеличивается и срабатывает реле К1. В качестве антенны приемника можно использовать штырь длиной 70... 100 см. Максимальная чувствительность сверхрегенеративного приемника устанавливается подбором сопротивления резистора R1.

Детали и монтаж приемника

Монтаж приемника выполняют печатным способом на плате из фольгированного стеклотекстолита толщиной 1,5 мм и размерами 100x65 мм. В приемнике используются резисторы и конденсаторы тех же типов, что и в передатчике.

Катушка контура сверхрегенератора L1 имеет 8 витков провода ПЭЛШО 0,35, намотанных виток к витку на полистироловом каркасе диаметром 6,5 мм, с подстроечным ферритовым сердечником марки 100НН диаметром 2,7 мм и длиной 8 мм. Дроссели имеют индуктивность: L2 — 8 мкГн, a L3 — 0,07...0,1 мкГн.

Электромагнитное реле К1 типа РЭС-6 с обмоткой сопротивлением 200 Ом.

Настройка приемника

Настройку приемника начинают с сверхрегенеративного каскада. Подключают высокоомные наушники параллельно конденсатору С7 и включают питание. Появившийся в наушниках шум свидетельствует об исправной работе сверхрегенеративного детектора.

Изменением сопротивления резистора R1 добиваются максимального шума в наушниках. Каскад усиления напряжения на транзисторе VT2 и электронное реле особой наладки не требуют.

Подбором сопротивления резистора R7 добиваются чувствительности приемника порядка 20 мкВ. Окончательная настройка приемника производится совместно с передатчиком.

Если в приемнике параллельно обмотке реле К1 подключить наушники и включить передатчик, то в наушниках должен прослушиваться громкий шум. Настройка приемника на частоту передатчика приводит к пропаданию шума в наушниках и срабатыванию реле.

Я остановился на том, что разблокировал четвертую ось управления и установил в пульт тучку кнопок, переключателей и светодиодов. Дальше дело было за схемой, паяльником и прошивкой . Как потом оказалось, кнопок и разъемов оказалось маловато, пришлось доустанавливать.

Схема самодельного пульта радиоуправления

Схема сделана на основе микроконтроллера Atmega8. Его ножек хватило буквально «впритык». Чтобы увидеть большую схему — кликните по картинке (схема так же находиться в архиве, который в конце статьи.

Подсчитаем: 10 кнопок/переключателей + 2 светодиода + 2 ножки на кварц (нам нужен точный во времени ШИМ сигнал) + 5 каналов АЦП + 2 ножки на UART + 1 канал на вывод сигнала РРМ на ВЧ модуль = 22 ножек МК. Как раз столько, сколько есть у Atmega8, которая настроена на внутрисхемное программирование (имею в виду пин RESET, он же PC6).

Светодиоды подключил на PB3 и PB5 (MOSI и SCK разъема программирования) Теперь во время заливки прошивки буду наблюдать красивое перемигивание (бесполезное в некотором смысле — но тут я гнался за визуальным красивым эффектом ).

Напомню с чего все началось — у меня в наличии появился ВЧ модуль из хобикинговской аппаратуры (он был заменен на ВЧ модуль FrSky), и была вертолетная аппаратура. Так как в аппаратуре не было никаких крутилок (да и зачем они?) то получается из шести каналов я буду нормально (штатно) использовать только 4 (по два на каждый стик). Один канал я решил потратить на 8 независимых кнопок/переключателей, еще один — программно имитировать вращение крутилки (например — красивый выпуск шасси — щелкнул переключателем, и шасси на протяжении 10 секунд выпускаются). Еще один переключатель до сих пор не определился, что с ним делать.
Светодиоды, показывающие состояние переключателей — работают независимо от микроконтроллера. Один из программно управляемых светодиодов отвечает за индикацию разряженной батареи, второй — показывает текущее состояние программной крутилки.

В корпус кроме кнопок и светодиодов еще захотелось добавить стандартный (для меня) разъем UART (для связи с ПК, потом буду писать свою программу настройки), и разъем с выводом РРМ сигнала — для подключения пульта к симулятору. Помучившись с разъемом для программатора — понял, что это мне не подходит — и тоже вывел его наружу. Единственное, что плохо в этом — что появилась опасность замкнуть штырьки разъема, хотя они и «утоплены» в корпусе. Но это лечиться последовательными резисторами 220 Ом (что дает 99% гарантию, что микроконтроллер останется цел)

Когда уже вплотную подошел к использованию аппаратуры, понял, что забыл о кнопке Bind (при нажатии на которую передатчик переходит в режим поиска приемника). Пришлось допиливать и это

Печатная плата контроллера пульта радиоуправления

Весьма простенькая — большая часть ножек просто выведена наружу. На плате присутствует стабилизатор на 5 вольт, и схема измерения входного напряжения. Почему использовал DIP корпус? Та просто был он у меня… кроме того — почему бы и не DIP…

Когда паял все это — то пробирала мысль — разве эта туча проводов будет работать?!
Но все же оно работает. Обычно у меня платы чистые от канифоли… но тут уж постоянно возился с делителем, пока не оказалось, что это у меня программная проблема а не «железная». Питание от двухбаночной липольки (то, что когда-то осталось от нормальной трехбаночной, после того, как ее забыли отключить от нагрузки. В результате одна из банок ушла в полный разряд). Несмотря на это — предусмотрел возможность работы и от пальчиковых батарей. Мало ли

В результате получил четырехканальную аппаратуру со своей собственной прошивкой, в которой я могу менять все что мне захочется. Вот о прошивке и программном обеспечении напишу потом.

А сейчас можно скачать текущую версию прошивки. Пока что не настраивается вообще (т.е. настроек реверса, расходов, смещения и прочих «вкусностей» еще нету). Просто считывается состояние крутилок и генерируется РРМ сигнал. Кнопки и выключатель MOD пока не работает. Зато работает виртуальная серва (на 5 канале) и измерение уровня входного напряжения. Если оно слишком низкое — светодиод IND начнет мигать (прошивка автоматически определяет сколько банок у литий-полимерного аккумулятора). И еще — расходы по 4 каналу (тому, где я добавлял свой потенциометр) — завышены, чтобы компенсировать неполный диапазон вращения потенциометра.

С детства у меня была тяга к игрушкам. Но больше всего меня интересовали радиоуправляемые игрушки. В детстве у меня не было таких игрушек. Сами понимаете ссср родители не могли позволить себе такое. Что касается кружков радио любителей этого тоже не было. А как этого хотелось.
Когда уже вырос появилось возможность купить любую игрушку. Тяга по прежнему была сильной. Но покупать готовое решение было не интересно. Главное же не сама игрушка а сделать что-то самому. И я решил сделать радиоуправляемый самолет своими руками.

Необходимые инструменты и материалы:

  • канцелярский нож
  • клей пистолет
  • металлическая линейка
  • скотч
  • пенокартон

После многих просмотров различных материалов и чертежей я остановился на пенокартоне. Пенокартон это удивительно легкий и прочный (относительно) материал. И для самолета это просто идеальный материал. Кстати и не только для самолета.
Пенокартон бывает разных диаметров я встречал 0.3, 0.5 и 1 см

В рунете полно вариантов самолета своими руками и с другими материалами. Главное прочность и легкость материала.

Прикупил я несколько листов пенокортона толщиной 3 мм. Размер 900 х 700 мм. Для небольшого самолета достаточно и двух листов.

Для того чтобы вам сделать самолет с правильными пропорциями и чтобы он подчинялась законам аэродинамики вам нужно обладать некими знаниями или скачать чертежи в интернете. Я поленился и пропустил этот момент. у меня самолет получился в нужной пропорции но сделан не по расчетам и схемам. Конечно для радиоуправляемого самолета не нужны расчеты как в авиастроении, но все же надо учесть некоторые моменты.

Из готовых эскизов собираем самолет с помощью пистолета клея. местами нужно применить уголки прочности. Принцып построения самого самолета показано в этом видео. Весь самолет был построен по этому принципу.

Вот из этого что получилось у меня.

Я для красоты обтянул самолет самоклеющейся пленкой.

Органы управления

Для органов управления самолетом необходимо докупить детали. Обычно я покупаю детали на китайских сайтах. ПО мне лучше подождать 15-25 дней нежели переплатить большую сумму.

Основные детали:

мотор
серво приводы (4шт)
регулятор скорости
аккумуляторная батарея 11.1 или 7.4 вольт

Мотор — Mystery Бесщеточный электродвигатель 13000 оборотов в минуту (11,1V) заказал на китайском сайте.

Плюсом этого мотора в том что можно использовать разное напряжение 11.1 или 7.4 вольт

Регулятор скорости тоже поддерживает напряжение 11.1 или 7.4 вольт. Заказал на китайском сайте.

Серво приводы — сервомашинки. Обычные маленькие. для управления элеронами, рулем высоты и руля управления. в моем случае я применил 4 штуки. 2 на элероны, 1 на руль высоты и 1 на руля направления.

Органы управления самолета:

Органы управления радиоуправляемого самолета такие же как и у настоящего самолета. Отличие только в отсутствии закрылок. для таких маленьких радиоуправляемых игрушек закрылки не нужны. Но можно применить.

Для управления самолетом заказал пульт управления 4х канальное. Бюджетный вариант. Купил на сайте Алиэкспрес за 1300 рублей.
Пульт продается вместе с приемником.

Подключение элеронов из двух сервомашинок

Схема подключения:
Чтобы правильно подключить электронику используйте инструкцию. В основном все приемники подключается одинаково.
Для подключения 2 сервоприводов на элероны используйте У кабель. Но этот кабель можно и самому сделать.

Подключение органов управления к приемнику

При этом нужно поставить сервомашинки так чтобы они при движении двигались в разные стороны.
Схема подключения электроники к приемнику радиоуправляемого самолета.

Настройку работы всех органов управления нужно производит методом испытаний и тестов.

Пока я испытывал свой самолет я успел испортить 3 воздушных винта. Поэтому нужно учесть возможности поломки и закупить больше винтов.

Немного видео моего самолета.

Если вам полезна моя статья оставляйте комментарии и задавайте вопросы с радостью отвечу!

Многие хотели собрать простую схему радиоуправления, но чтоб была многофункциональна и на достаточно большое расстояние. Я все-таки эту схему собрал, потратив на неё почти месяц. На платах дорожки рисовал от руки, так как принтер не пропечатывает такие тонкие. На фотографии приемника светодиоды с не подрезанными выводами - припаял их только для демонстрации работы радиоуправления. В дальнейшем их отпаяю и соберу радиоуправляемый самолет.

Схема аппаратуры радиоуправления состоит всего из двух микросхем: трансивера MRF49XA и микроконтроллера PIC16F628A. Детали в принципе доступные, но для меня проблемой был трансивер, пришлось через интернет заказывать. и платой качайте здесь. Подробнеее об устройстве:

MRF49XA - малогабаритный трансивер, имеющий возможность работать в трех частотных диапазонах.
- Низкочастотный диапазон: 430,24 - 439,75 Mгц (шаг 2,5 кГц).
- Высокочастотный диапазон А: 860,48 - 879,51 МГц (шаг 5 кГц).
- Высокочастотный диапазон Б: 900,72 - 929,27 МГц (шаг 7,5 кГц).
Границы диапазонов указаны при условии применения опорного кварца частотой 10 МГц.

Принципиальная схема передатчика:

В схеме TX довольно мало деталей. И она очень стабильная, более того даже не требует настройки, работает сразу после сборки. Дистанция (согласно источнику) около 200 метров.

Теперь к приемнику. Блок RX выполнен по аналогичной схеме, различия только в светодиодах, прошивках и кнопках. Параметры 10-ти командного блока радиоуправления:

Передатчик:
Мощность - 10 мВт
Напряжение питания 2,2 - 3,8 В (согласно даташиту на м/с, на практике нормально работает до 5 вольт).
Ток, потребляемый в режиме передачи - 25 мА.
Ток покоя - 25 мкА.
Скорость данных - 1кбит/сек.
Всегда передается целое количество пакетов данных.
Модуляция - FSK.
Помехоустойчивое кодирование, передача контрольной суммы.

Приемник:
Чувствительность - 0,7 мкВ.
Напряжение питания 2,2 - 3,8 В (согласно даташиту на микросхему, на практике нормально работает до 5 вольт).
Постоянный потребляемый ток - 12 мА.
Скорость данных до 2 кбит/сек. Ограничена программно.
Модуляция - FSK.
Помехоустойчивое кодирование, подсчет контрольной суммы при приеме.

Преимущества данной схемы

Возможность нажатия в любой комбинации любого количества кнопок передатчика одновременно. Приемник при этом отобразит светодиодами нажатые кнопки в реальном режиме. Говоря проще, пока нажата кнопка (или комбинация кнопок) на передающей части, на приемной части горит, соответствующий светодиод (или комбинация светодиодов).

Во время подачи питания на приемник и передатчик, они уходят в тест режим на 3 секунды. В это время ничего не работает, по истечению 3-х секунд обе схемы готовы к работе.

Кнопка (или комбинация кнопок) отпускается - соответсвующие светодиоды сразу же гаснут. Идеально подходит для радиоуправления различными игрушками - катерами, самолётами, автомобилями. Либо можно использовать, как блок дистанционного управления различными исполнительными устройствами на производстве.

На печатной плате передатчика кнопки расположены в один ряд, но я решил собрать что-то наподобии пульта на отдельной плате.

Питаются оба модуля от аккумуляторов 3,7В. У приемника, который потребляет заметно меньше тока, аккумулятор от электронной сигареты, у передатчика - от моего любимого телефона)) Схему, найденную на сайте вртп , собрал и испытал: [)еНиС

Обсудить статью РАДИОУПРАВЛЕНИЕ НА МИКРОКОНТРОЛЛЕРЕ